Research on a New Method of Macro-Micro Platform Linkage Processing for Large-Format Laser Precision Machining.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-01-31 DOI:10.3390/mi16020177
Longjie Xiong, Haifeng Ma, Zheng Sun, Xintian Wang, Yukui Cai, Qinghua Song, Zhanqiang Liu
{"title":"Research on a New Method of Macro-Micro Platform Linkage Processing for Large-Format Laser Precision Machining.","authors":"Longjie Xiong, Haifeng Ma, Zheng Sun, Xintian Wang, Yukui Cai, Qinghua Song, Zhanqiang Liu","doi":"10.3390/mi16020177","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the macro-micro structure (servo platform for macro motion and galvanometer for micro motion) composed of a galvanometer and servo platform has been gradually applied to laser processing in order to address the increasing demand for high-speed, high-precision, and large-format precision machining. The research in this field has evolved from step-and-scan methods to linkage processing methods. Nevertheless, the existing linkage processing methods cannot make full use of the field-of-view (FOV) of the galvanometer. In terms of motion distribution, the existing methods are not suitable for continuous micro segments and generate the problem that the distribution parameter can only be obtained through experience or multiple experiments. In this research, a new laser linkage processing method for global trajectory smoothing of densely discretized paths is proposed. The proposed method can generate a smooth trajectory of the servo platform with bounded acceleration by the finite impulse response (FIR) filter under the global blending error constrained by the galvanometer FOV. Moreover, the trajectory of the galvanometer is generated by vector subtraction, and the motion distribution of macro-micro structure is accurately realized. Experimental verification is carried out on an experimental platform composed of a three-axis servo platform, a galvanometer, and a laser. Simulation experiment results indicate that the processing efficiency of the proposed method is improved by 79% compared with the servo platform processing only and 55% compared with the previous linkage processing method. Furthermore, the method can be successfully utilized on experimental platforms with good tracking performance. In summary, the proposed method adeptly balances efficiency and quality, rendering it particularly suitable for laser precision machining applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the macro-micro structure (servo platform for macro motion and galvanometer for micro motion) composed of a galvanometer and servo platform has been gradually applied to laser processing in order to address the increasing demand for high-speed, high-precision, and large-format precision machining. The research in this field has evolved from step-and-scan methods to linkage processing methods. Nevertheless, the existing linkage processing methods cannot make full use of the field-of-view (FOV) of the galvanometer. In terms of motion distribution, the existing methods are not suitable for continuous micro segments and generate the problem that the distribution parameter can only be obtained through experience or multiple experiments. In this research, a new laser linkage processing method for global trajectory smoothing of densely discretized paths is proposed. The proposed method can generate a smooth trajectory of the servo platform with bounded acceleration by the finite impulse response (FIR) filter under the global blending error constrained by the galvanometer FOV. Moreover, the trajectory of the galvanometer is generated by vector subtraction, and the motion distribution of macro-micro structure is accurately realized. Experimental verification is carried out on an experimental platform composed of a three-axis servo platform, a galvanometer, and a laser. Simulation experiment results indicate that the processing efficiency of the proposed method is improved by 79% compared with the servo platform processing only and 55% compared with the previous linkage processing method. Furthermore, the method can be successfully utilized on experimental platforms with good tracking performance. In summary, the proposed method adeptly balances efficiency and quality, rendering it particularly suitable for laser precision machining applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信