A Hardware Accelerator for Real-Time Processing Platforms Used in Synthetic Aperture Radar Target Detection Tasks.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-07 DOI:10.3390/mi16020193
Yue Zhang, Yunshan Tang, Yue Cao, Zhongjun Yu
{"title":"A Hardware Accelerator for Real-Time Processing Platforms Used in Synthetic Aperture Radar Target Detection Tasks.","authors":"Yue Zhang, Yunshan Tang, Yue Cao, Zhongjun Yu","doi":"10.3390/mi16020193","DOIUrl":null,"url":null,"abstract":"<p><p>The deep learning object detection algorithm has been widely applied in the field of synthetic aperture radar (SAR). By utilizing deep convolutional neural networks (CNNs) and other techniques, these algorithms can effectively identify and locate targets in SAR images, thereby improving the accuracy and efficiency of detection. In recent years, achieving real-time monitoring of regions has become a pressing need, leading to the direct completion of real-time SAR image target detection on airborne or satellite-borne real-time processing platforms. However, current GPU-based real-time processing platforms struggle to meet the power consumption requirements of airborne or satellite applications. To address this issue, a low-power, low-latency deep learning SAR object detection algorithm accelerator was designed in this study to enable real-time target detection on airborne and satellite SAR platforms. This accelerator proposes a Process Engine (PE) suitable for multidimensional convolution parallel computing, making full use of Field-Programmable Gate Array (FPGA) computing resources to reduce convolution computing time. Furthermore, a unique memory arrangement design based on this PE aims to enhance memory read/write efficiency while applying dataflow patterns suitable for FPGA computing to the accelerator to reduce computation latency. Our experimental results demonstrate that deploying the SAR object detection algorithm based on Yolov5s on this accelerator design, mounted on a Virtex 7 690t chip, consumes only 7 watts of dynamic power, achieving the capability to detect 52.19 512 × 512-sized SAR images per second.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020193","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The deep learning object detection algorithm has been widely applied in the field of synthetic aperture radar (SAR). By utilizing deep convolutional neural networks (CNNs) and other techniques, these algorithms can effectively identify and locate targets in SAR images, thereby improving the accuracy and efficiency of detection. In recent years, achieving real-time monitoring of regions has become a pressing need, leading to the direct completion of real-time SAR image target detection on airborne or satellite-borne real-time processing platforms. However, current GPU-based real-time processing platforms struggle to meet the power consumption requirements of airborne or satellite applications. To address this issue, a low-power, low-latency deep learning SAR object detection algorithm accelerator was designed in this study to enable real-time target detection on airborne and satellite SAR platforms. This accelerator proposes a Process Engine (PE) suitable for multidimensional convolution parallel computing, making full use of Field-Programmable Gate Array (FPGA) computing resources to reduce convolution computing time. Furthermore, a unique memory arrangement design based on this PE aims to enhance memory read/write efficiency while applying dataflow patterns suitable for FPGA computing to the accelerator to reduce computation latency. Our experimental results demonstrate that deploying the SAR object detection algorithm based on Yolov5s on this accelerator design, mounted on a Virtex 7 690t chip, consumes only 7 watts of dynamic power, achieving the capability to detect 52.19 512 × 512-sized SAR images per second.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信