Dual-Polarized Metasurface-Integrated Antenna for Integrated Imaging of LWIR Camera and SAR.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-10 DOI:10.3390/mi16020202
Jijian Hu, Zhenghong Dong, Lurui Xia, Xueqi Chen
{"title":"Dual-Polarized Metasurface-Integrated Antenna for Integrated Imaging of LWIR Camera and SAR.","authors":"Jijian Hu, Zhenghong Dong, Lurui Xia, Xueqi Chen","doi":"10.3390/mi16020202","DOIUrl":null,"url":null,"abstract":"<p><p>The integrated imaging of LWIR cameras and SAR is one of the important directions of multi-sensor integration. In order to reduce the structural complexity of LWIR cameras and SAR-integrated imaging antenna, a dual-polarized metasurface-integrated antenna (MIA) is designed in this paper. It is composed of a microwave metasurface antenna and an optical metalens, and the metalens is embedded in the center of the metasurface antenna. The MIA uses the powerful electromagnetic wave control ability to simplify the optical and microwave signal transmission paths and reduce the number of devices. At the same time, in order to expand the function of the MIA, based on the principle of metasurface, the dual-linearly polarized and dual-circularly polarized MIAs are designed and simulated, respectively. The results show that the designed dual-polarized MIA has good performance. This paper provides a new scheme for the integrated imaging system of LWIR cameras and SAR with simple structure, diverse functions and easy integration.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020202","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated imaging of LWIR cameras and SAR is one of the important directions of multi-sensor integration. In order to reduce the structural complexity of LWIR cameras and SAR-integrated imaging antenna, a dual-polarized metasurface-integrated antenna (MIA) is designed in this paper. It is composed of a microwave metasurface antenna and an optical metalens, and the metalens is embedded in the center of the metasurface antenna. The MIA uses the powerful electromagnetic wave control ability to simplify the optical and microwave signal transmission paths and reduce the number of devices. At the same time, in order to expand the function of the MIA, based on the principle of metasurface, the dual-linearly polarized and dual-circularly polarized MIAs are designed and simulated, respectively. The results show that the designed dual-polarized MIA has good performance. This paper provides a new scheme for the integrated imaging system of LWIR cameras and SAR with simple structure, diverse functions and easy integration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信