High Q GaN/SiC-Based SAW Resonators for Humidity Sensor Applications.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-01-28 DOI:10.3390/mi16020150
Dan Vasilache, Claudia Nastase, George Boldeiu, Monica Nedelcu, Catalin Parvulescu, Adrian Dinescu, Alexandru Muller
{"title":"High Q GaN/SiC-Based SAW Resonators for Humidity Sensor Applications.","authors":"Dan Vasilache, Claudia Nastase, George Boldeiu, Monica Nedelcu, Catalin Parvulescu, Adrian Dinescu, Alexandru Muller","doi":"10.3390/mi16020150","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the simulation and experimental results for high-frequency surface acoustic wave (SAW) sensors for humidity detection. The SAW structures with a wavelength of 680 nm are fabricated on GaN/SiC and presented two resonance frequencies: ~6.66 GHz for the Rayleigh propagation mode and ~8 GHz for the Sezawa mode. A SiO<sub>2</sub> thin layer (~50 nm thick) was employed for the functionalization of the SAW. Relative humidity characterization was performed in the range of 20-90%. The SAW sensors achieved high values of humidity sensitivity for both adsorption and desorption. The Sezawa mode showed about 2.5 times higher humidity sensitivity than the Rayleigh mode: 17.2 KHz/%RH versus 6.17 KHz/%RH for adsorption and 8.88 KHz/%RH versus 3.79 KHz/%RH for desorption.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020150","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the simulation and experimental results for high-frequency surface acoustic wave (SAW) sensors for humidity detection. The SAW structures with a wavelength of 680 nm are fabricated on GaN/SiC and presented two resonance frequencies: ~6.66 GHz for the Rayleigh propagation mode and ~8 GHz for the Sezawa mode. A SiO2 thin layer (~50 nm thick) was employed for the functionalization of the SAW. Relative humidity characterization was performed in the range of 20-90%. The SAW sensors achieved high values of humidity sensitivity for both adsorption and desorption. The Sezawa mode showed about 2.5 times higher humidity sensitivity than the Rayleigh mode: 17.2 KHz/%RH versus 6.17 KHz/%RH for adsorption and 8.88 KHz/%RH versus 3.79 KHz/%RH for desorption.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信