Enhancing the Sensitivity of a Thermal Microflow Sensor: A Comprehensive Modeling and Simulation Study.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-18 DOI:10.3390/mi16020231
Junhua Gao, Liangliang Tian, Zhengfu Cheng
{"title":"Enhancing the Sensitivity of a Thermal Microflow Sensor: A Comprehensive Modeling and Simulation Study.","authors":"Junhua Gao, Liangliang Tian, Zhengfu Cheng","doi":"10.3390/mi16020231","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of microfluidic technology has introduced new requirements for the sensitivity of microflow sensors. To address this, this paper presents a novel high-sensitivity thermal microflow sensor incorporating a heat-insulating cavity structure. The sensor utilizes porous silicon as the substrate and employs vanadium dioxide as the thermistor element. This study employed COMSOL Multiphysics finite element software 5.6 to investigate the impact of materials and structural factors on the sensor's sensitivity, as well as considering the dynamic laws governing their influence. Additionally, the effects of thermal expansion and thermal stress on the microstructure of the sensor are thoroughly examined. The research results show that the sensitivity of the sensor was influenced by key factors such as the distance between the heater and the thermistors, the diameter of the flow channel, the power of the heater, and the presence of an insulation cavity. The utilization of B-phase vanadium dioxide, known for its high temperature coefficient of resistance and suitable resistivity, led to a significant reduction in sensor size and a remarkable improvement in sensitivity. The implementation of four thermistors forming a Wheatstone full bridge further enhanced the sensor's sensitivity. The sensor's sensitivity was substantially higher when employing a porous silicon substrate compared with a silicon substrate. Moreover, the integration of a micro-bridge and four micro-beams composed of silicon nitride into the sensor's structure further improved its sensitivity. The proposed design holds promise for enhancing the sensitivity of thermal microflow sensors and offers valuable insights for future advancements in MEMS technology.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020231","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of microfluidic technology has introduced new requirements for the sensitivity of microflow sensors. To address this, this paper presents a novel high-sensitivity thermal microflow sensor incorporating a heat-insulating cavity structure. The sensor utilizes porous silicon as the substrate and employs vanadium dioxide as the thermistor element. This study employed COMSOL Multiphysics finite element software 5.6 to investigate the impact of materials and structural factors on the sensor's sensitivity, as well as considering the dynamic laws governing their influence. Additionally, the effects of thermal expansion and thermal stress on the microstructure of the sensor are thoroughly examined. The research results show that the sensitivity of the sensor was influenced by key factors such as the distance between the heater and the thermistors, the diameter of the flow channel, the power of the heater, and the presence of an insulation cavity. The utilization of B-phase vanadium dioxide, known for its high temperature coefficient of resistance and suitable resistivity, led to a significant reduction in sensor size and a remarkable improvement in sensitivity. The implementation of four thermistors forming a Wheatstone full bridge further enhanced the sensor's sensitivity. The sensor's sensitivity was substantially higher when employing a porous silicon substrate compared with a silicon substrate. Moreover, the integration of a micro-bridge and four micro-beams composed of silicon nitride into the sensor's structure further improved its sensitivity. The proposed design holds promise for enhancing the sensitivity of thermal microflow sensors and offers valuable insights for future advancements in MEMS technology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信