Therapeutic Potential of TPT-260 in Ischemic Stroke: An Investigation Into Its Anti-Inflammatory Effects and Impact on Microglial Activation.

IF 4.2 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-03-01 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S497030
Jun Qian, Xiaoming Guo, Qian Xu, Zhidong Huang
{"title":"Therapeutic Potential of TPT-260 in Ischemic Stroke: An Investigation Into Its Anti-Inflammatory Effects and Impact on Microglial Activation.","authors":"Jun Qian, Xiaoming Guo, Qian Xu, Zhidong Huang","doi":"10.2147/JIR.S497030","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic stroke is characterized by a high incidence and elevated mortality. Ischemic events trigger neuroinflammation, leading to severe brain edema and neuronal necrosis. Microglia are the primary mediators of neuroinflammation. Inhibition of M1 microglia effectively alleviate neuronal damage in mild stroke. TPT-260 is a minimally cytotoxic, small molecule chaperone of the retromer complex, which mediates the recycling and trafficking of membrane protein receptors. This study explores the therapeutic effects and related mechanisms of TPT-260 in stroke model mice from an anti-inflammatory perspective, aiming to evaluate the efficacy and mechanism of TPT-260 in treating stroke.</p><p><strong>Methods: </strong>In this study, a middle cerebral artery occlusion (MCAO) animal model was established to simulate ischemic stroke. Primary microglia were cultured for lipopolysaccharides treatment to construct M1 microglia. Both animals and cells were treated with TPT-260. Nuclear factor-κB (NF-κB) nuclear translocation and the expression of downstream pro-inflammatory factors Interleukin 1β (IL-1β) and Tumor necrosis factor-α (TNF-α) were determined.</p><p><strong>Results: </strong>In vivo results revealed that TPT-260 significantly reduced the brain infarct area and inflammation as well as improved the neurological function of the stroke model mice. The potential mechanism of TPT-260 involved the marked inhibition of the lipopolysaccharides-induced M1 microglia by suppressing NF-κB nuclear translocation and attenuating the expression IL-1β and TNF-α. Moreover, TPT-260 inhibited NOD-like receptor protein 3 and reduced inflammasome formation, thereby decreasing the release of mature IL-1β and alleviating neuroinflammation.</p><p><strong>Conclusion: </strong>TPT-260 attenuated M1 microglia via repression of NF-κB signaling, thus preventing neuroinflammation and neuronal injuries in stroke model mice.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"3055-3066"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S497030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ischemic stroke is characterized by a high incidence and elevated mortality. Ischemic events trigger neuroinflammation, leading to severe brain edema and neuronal necrosis. Microglia are the primary mediators of neuroinflammation. Inhibition of M1 microglia effectively alleviate neuronal damage in mild stroke. TPT-260 is a minimally cytotoxic, small molecule chaperone of the retromer complex, which mediates the recycling and trafficking of membrane protein receptors. This study explores the therapeutic effects and related mechanisms of TPT-260 in stroke model mice from an anti-inflammatory perspective, aiming to evaluate the efficacy and mechanism of TPT-260 in treating stroke.

Methods: In this study, a middle cerebral artery occlusion (MCAO) animal model was established to simulate ischemic stroke. Primary microglia were cultured for lipopolysaccharides treatment to construct M1 microglia. Both animals and cells were treated with TPT-260. Nuclear factor-κB (NF-κB) nuclear translocation and the expression of downstream pro-inflammatory factors Interleukin 1β (IL-1β) and Tumor necrosis factor-α (TNF-α) were determined.

Results: In vivo results revealed that TPT-260 significantly reduced the brain infarct area and inflammation as well as improved the neurological function of the stroke model mice. The potential mechanism of TPT-260 involved the marked inhibition of the lipopolysaccharides-induced M1 microglia by suppressing NF-κB nuclear translocation and attenuating the expression IL-1β and TNF-α. Moreover, TPT-260 inhibited NOD-like receptor protein 3 and reduced inflammasome formation, thereby decreasing the release of mature IL-1β and alleviating neuroinflammation.

Conclusion: TPT-260 attenuated M1 microglia via repression of NF-κB signaling, thus preventing neuroinflammation and neuronal injuries in stroke model mice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信