{"title":"Characterization of Pseudomonas phage MME: a novel tool for combatting multidrug-resistant Pseudomonas aeruginosa and disinfection.","authors":"Berna Erdogdu, Tulin Ozbek","doi":"10.1093/jambio/lxaf052","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Combatting Pseudomonas aeruginosa, known for its robust biofilm formation, presents significant challenges in healthcare, food, and industry. Phages offer promising alternatives against this resilient pathogen. We aim to demonstrate their viability as alternative therapeutic and decontamination options.</p><p><strong>Methods and results: </strong>We introduce the lytic activity and decontamination efficacy of Pseudomonas phage MME, isolated from sewage, on solid surfaces, as well as on its biological and genomic characterization. The phage showed lytic activity against both antibiotic-resistant clinical strains and reference strains. About 90% of the phage adsorbed to its host within 20 min, with an average burst size of ∼53 PFU per infected cell. The bactericidal effect on the host at the 8th hour showed a 95% killing efficiency. Additionally, phage MME effectively reduced bacterial loads on glass, plastic, and metal surfaces, simulating hospital environments. Confocal laser scanning microscopy demonstrated the phage's bactericidal activity on glass surfaces at the 8th and 12th hours, preventing biofilm formation. Bioinformatic analysis confirmed that phage MME represents a new species within the Bruynoghevirus genus. Comparative genomic analysis revealed no virulence factors within the phage MME genome.</p><p><strong>Conclusions: </strong>These findings highlight the potent lytic activity of phage MME against P. aeruginosa, underscoring its potential as a valuable tool in combatting this pathogen and its suitability for diverse applications, including as a decontaminating agent.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf052","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Combatting Pseudomonas aeruginosa, known for its robust biofilm formation, presents significant challenges in healthcare, food, and industry. Phages offer promising alternatives against this resilient pathogen. We aim to demonstrate their viability as alternative therapeutic and decontamination options.
Methods and results: We introduce the lytic activity and decontamination efficacy of Pseudomonas phage MME, isolated from sewage, on solid surfaces, as well as on its biological and genomic characterization. The phage showed lytic activity against both antibiotic-resistant clinical strains and reference strains. About 90% of the phage adsorbed to its host within 20 min, with an average burst size of ∼53 PFU per infected cell. The bactericidal effect on the host at the 8th hour showed a 95% killing efficiency. Additionally, phage MME effectively reduced bacterial loads on glass, plastic, and metal surfaces, simulating hospital environments. Confocal laser scanning microscopy demonstrated the phage's bactericidal activity on glass surfaces at the 8th and 12th hours, preventing biofilm formation. Bioinformatic analysis confirmed that phage MME represents a new species within the Bruynoghevirus genus. Comparative genomic analysis revealed no virulence factors within the phage MME genome.
Conclusions: These findings highlight the potent lytic activity of phage MME against P. aeruginosa, underscoring its potential as a valuable tool in combatting this pathogen and its suitability for diverse applications, including as a decontaminating agent.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.