Responsive nanoparticles synergize with Curcumin to break the "reactive oxygen Species-Neuroinflammation" vicious cycle, enhancing traumatic brain injury outcomes.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xianhua Fu, Yongkang Zhang, Guojie Chen, Guangyao Mao, Jiajia Tang, Jin Xu, Yuhan Han, Honglin Chen, Lianshu Ding
{"title":"Responsive nanoparticles synergize with Curcumin to break the \"reactive oxygen Species-Neuroinflammation\" vicious cycle, enhancing traumatic brain injury outcomes.","authors":"Xianhua Fu, Yongkang Zhang, Guojie Chen, Guangyao Mao, Jiajia Tang, Jin Xu, Yuhan Han, Honglin Chen, Lianshu Ding","doi":"10.1186/s12951-025-03251-y","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) disrupts oxygen homeostasis in the brain, leading to excessive reactive oxygen species (ROS) production and dysregulated antioxidant mechanisms, which fail to clear excess ROS. This ROS overload promotes the expression of pro-inflammatory genes, releasing cytokines and chemokines and creating a vicious \"ROS-neuroinflammation\" cycle, making it essential to break this cycle for effective TBI treatment. In this study, we developed cysteine-alanine-glutamine-lysine (CAQK) peptide-modified antioxidant nanoparticles (C-PPS/C) for co-delivery of curcumin (Cur) to modulate oxidative and neuroinflammatory disturbances after TBI. In TBI mice, C-PPS/C nanoparticles accumulated in injured brain regions, where poly (propylene sulfide)<sub>120</sub> scavenged ROS, reducing oxidative stress, while Cur release further suppressed ROS and inflammation. C-PPS/C nanoparticles broke the \"ROS-neuroinflammation\" cycle, protecting the blood-brain barrier (BBB), reducing acute brain edema, and promoting long-term neurological recovery. Further investigation showed that C-PPS/C nanoparticles inhibited the NF-κB pathway, reducing pro-inflammatory gene expression and mitigating inflammation, suggesting a promising approach for TBI treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"172"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03251-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) disrupts oxygen homeostasis in the brain, leading to excessive reactive oxygen species (ROS) production and dysregulated antioxidant mechanisms, which fail to clear excess ROS. This ROS overload promotes the expression of pro-inflammatory genes, releasing cytokines and chemokines and creating a vicious "ROS-neuroinflammation" cycle, making it essential to break this cycle for effective TBI treatment. In this study, we developed cysteine-alanine-glutamine-lysine (CAQK) peptide-modified antioxidant nanoparticles (C-PPS/C) for co-delivery of curcumin (Cur) to modulate oxidative and neuroinflammatory disturbances after TBI. In TBI mice, C-PPS/C nanoparticles accumulated in injured brain regions, where poly (propylene sulfide)120 scavenged ROS, reducing oxidative stress, while Cur release further suppressed ROS and inflammation. C-PPS/C nanoparticles broke the "ROS-neuroinflammation" cycle, protecting the blood-brain barrier (BBB), reducing acute brain edema, and promoting long-term neurological recovery. Further investigation showed that C-PPS/C nanoparticles inhibited the NF-κB pathway, reducing pro-inflammatory gene expression and mitigating inflammation, suggesting a promising approach for TBI treatment.

响应性纳米粒子与姜黄素协同作用,打破了 "活性氧-神经炎症 "的恶性循环,提高了创伤性脑损伤的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信