Critical time of transovarial transmission of bacteriome-associated symbionts and related molecular mechanisms in cicada Hyalessa maculaticollis.

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Lu Liu, Qiong Guo, Xiaohong Han, Feimin Yuan, Cong Wei
{"title":"Critical time of transovarial transmission of bacteriome-associated symbionts and related molecular mechanisms in cicada Hyalessa maculaticollis.","authors":"Lu Liu, Qiong Guo, Xiaohong Han, Feimin Yuan, Cong Wei","doi":"10.1111/1744-7917.70014","DOIUrl":null,"url":null,"abstract":"<p><p>Obligate endosymbionts of sap-sucking auchenorrhynchan insects of Hemiptera colonize the bacteriomes and are transmitted vertically through the ovaries to the offspring of host insects, but the critical time of symbiont transmission and molecular mechanisms underlying the process remain unknown. We used histological and transmission electron microscopy, 16S rDNA amplification sequencing and transcriptome analyses to explore the vertical transmission of bacteriome-associated symbionts in the cicada Hyalessa maculaticollis. We find that the symbiont Candidatus Karelsulcia muelleri (hereafter Karelsulcia) proliferates and changes shape after the adult cicadas emerged for 3 h, which is then extruded to the hemolymph from the basal membrane of bacteriome units. The yeast-like fungal symbiont (YLS) harbored in bacteriome sheath cells is released freely along with Karelsulcia. As ovaries mature, Karelsulcia and YLS infect oocytes of cicadas that had emerged for 60 h, and begin to gather at the posterior pole of oocytes, where they form a symbiont ball in each oocyte. Expressions of genes associated with cytoskeletal organization, endocytosis, amino acid transporter and lipid synthesis increase in the newly emerged adults, mediating the transport of substances during the transmission of symbionts. The amino acid-sensitive mechanistic target of the rapamycin pathway is one of the crucial pathways coordinating the vesicle-mediated symbiotic transmission. The insulin signaling pathway potentially together with insect hormones synergically regulate insect fertility and affect yolk deposition, which is closely related to the symbiont infection of ovaries. This study highlights the importance of signaling pathways in regulating the vertical transmission of symbionts in sap-feeding auchenorrhynchan insects.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.70014","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obligate endosymbionts of sap-sucking auchenorrhynchan insects of Hemiptera colonize the bacteriomes and are transmitted vertically through the ovaries to the offspring of host insects, but the critical time of symbiont transmission and molecular mechanisms underlying the process remain unknown. We used histological and transmission electron microscopy, 16S rDNA amplification sequencing and transcriptome analyses to explore the vertical transmission of bacteriome-associated symbionts in the cicada Hyalessa maculaticollis. We find that the symbiont Candidatus Karelsulcia muelleri (hereafter Karelsulcia) proliferates and changes shape after the adult cicadas emerged for 3 h, which is then extruded to the hemolymph from the basal membrane of bacteriome units. The yeast-like fungal symbiont (YLS) harbored in bacteriome sheath cells is released freely along with Karelsulcia. As ovaries mature, Karelsulcia and YLS infect oocytes of cicadas that had emerged for 60 h, and begin to gather at the posterior pole of oocytes, where they form a symbiont ball in each oocyte. Expressions of genes associated with cytoskeletal organization, endocytosis, amino acid transporter and lipid synthesis increase in the newly emerged adults, mediating the transport of substances during the transmission of symbionts. The amino acid-sensitive mechanistic target of the rapamycin pathway is one of the crucial pathways coordinating the vesicle-mediated symbiotic transmission. The insulin signaling pathway potentially together with insect hormones synergically regulate insect fertility and affect yolk deposition, which is closely related to the symbiont infection of ovaries. This study highlights the importance of signaling pathways in regulating the vertical transmission of symbionts in sap-feeding auchenorrhynchan insects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信