Cxcl9-deficiency attenuates the progression of post-traumatic osteoarthritis in mice.

IF 4.8 3区 医学 Q2 CELL BIOLOGY
Antonia Donat, Weixin Xie, Shan Jiang, Laura Janina Brylka, Thorsten Schinke, Tim Rolvien, Karl-Heinz Frosch, Anke Baranowsky, Johannes Keller
{"title":"Cxcl9-deficiency attenuates the progression of post-traumatic osteoarthritis in mice.","authors":"Antonia Donat, Weixin Xie, Shan Jiang, Laura Janina Brylka, Thorsten Schinke, Tim Rolvien, Karl-Heinz Frosch, Anke Baranowsky, Johannes Keller","doi":"10.1007/s00011-025-02013-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Osteoarthritis (OA) is one of the leading causes of disability in the aging population. While about 10% of the adult population is affected by OA, there is to date no curative treatment and joint replacement surgery remains the only option for treating end-stage OA. Previous studies found elevated levels of the chemokine C-X-C motif ligand 9 (CXCL9) in the synovial fluid of OA knees. However, the exact role of CXCL9 in OA progression is still unknown.</p><p><strong>Methods: </strong>Female wild-type and Cxcl9-deficient mice were challenged with a unilateral anterior cruciate ligament transection (ACLT). Joint destruction in early and late stages of experimental OA was assessed using micro-CT scanning, histological scoring, histomorphometry, and gene expression analysis.</p><p><strong>Results: </strong>Inactivation of Cxcl9 protected from cartilage destruction and osteophyte formation in post-traumatic OA in mice. Similarly, indices of joint inflammation including synovitis and expression of pro-inflammatory interleukin-1beta were reduced in OA knees of Cxcl9-deficient mice. However, bone erosion and pathophysiological changes in the subchondral bone compartment remained unaffected in Cxcl9-deficient mice with experimental OA.</p><p><strong>Conclusion: </strong>Our results point towards a pro-inflammatory role of CXCL9 in OA and identify a potential new target for the pharmacological treatment of OA.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"74 1","pages":"48"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-025-02013-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Osteoarthritis (OA) is one of the leading causes of disability in the aging population. While about 10% of the adult population is affected by OA, there is to date no curative treatment and joint replacement surgery remains the only option for treating end-stage OA. Previous studies found elevated levels of the chemokine C-X-C motif ligand 9 (CXCL9) in the synovial fluid of OA knees. However, the exact role of CXCL9 in OA progression is still unknown.

Methods: Female wild-type and Cxcl9-deficient mice were challenged with a unilateral anterior cruciate ligament transection (ACLT). Joint destruction in early and late stages of experimental OA was assessed using micro-CT scanning, histological scoring, histomorphometry, and gene expression analysis.

Results: Inactivation of Cxcl9 protected from cartilage destruction and osteophyte formation in post-traumatic OA in mice. Similarly, indices of joint inflammation including synovitis and expression of pro-inflammatory interleukin-1beta were reduced in OA knees of Cxcl9-deficient mice. However, bone erosion and pathophysiological changes in the subchondral bone compartment remained unaffected in Cxcl9-deficient mice with experimental OA.

Conclusion: Our results point towards a pro-inflammatory role of CXCL9 in OA and identify a potential new target for the pharmacological treatment of OA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammation Research
Inflammation Research 医学-免疫学
CiteScore
9.90
自引率
1.50%
发文量
134
审稿时长
3-8 weeks
期刊介绍: Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信