{"title":"<i>Alcaligenes faecalis</i> promotes colitis to colorectal cancer transition through IgA+ B cell suppression and vinculin acetylation.","authors":"Jing Zheng, Chishun Zhou, Zizheng Li, Xin Jin, Yihua Zou, Shasha Bai, Huanjin Zheng, Weichao Ling, Yiru Zhao, Ying Wang, Rong Zhang, Zhongqiu Liu, Linlin Lu","doi":"10.1080/19490976.2025.2473511","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphoid tissue-resident commensal bacteria (LRC), a subtype of gut microbiota essential for inflammation-associated carcinogenesis, predominantly attribute to colorectal cancer(CRC), whereas its role was largely unknown. Herein, we found <i>Alcaligenes faecalis</i> (<i>A. faecalis</i>), the main LRC embedded in Peyer's patches, was abundantly enriched in colitis, adenoma, and stage-dependently observed in CRC tissues. Interestingly, <i>A. faecalis</i> alone can not affect intestinal homeostasis, while during colitis, <i>A. faecalis</i> significantly translocated from Peyer's patches to colon, remarkably attenuated immune response abilities of B cells, T cells, and DC cells in PPs, consequently impeded IgA+ B cells homing. Meanwhile, during colitis, the ectopia of <i>A. faecalis</i> in colon tissues, promoted vinculin acetylation by <i>A. faecalis</i>-derived metabolite acetic acid, which impeded intestinal barrier via hindering the binding of vinculin to β-catenin. Our study revealed <i>A. faecalis</i> not only suppress mucosal immune responses via reducing IgA+ B cells in Peyer's patches but also disrupt intestinal barrier via increasing vinculin acetylation, ultimately promoting inflammation-to-cancer transition in CRC.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2473511"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2473511","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lymphoid tissue-resident commensal bacteria (LRC), a subtype of gut microbiota essential for inflammation-associated carcinogenesis, predominantly attribute to colorectal cancer(CRC), whereas its role was largely unknown. Herein, we found Alcaligenes faecalis (A. faecalis), the main LRC embedded in Peyer's patches, was abundantly enriched in colitis, adenoma, and stage-dependently observed in CRC tissues. Interestingly, A. faecalis alone can not affect intestinal homeostasis, while during colitis, A. faecalis significantly translocated from Peyer's patches to colon, remarkably attenuated immune response abilities of B cells, T cells, and DC cells in PPs, consequently impeded IgA+ B cells homing. Meanwhile, during colitis, the ectopia of A. faecalis in colon tissues, promoted vinculin acetylation by A. faecalis-derived metabolite acetic acid, which impeded intestinal barrier via hindering the binding of vinculin to β-catenin. Our study revealed A. faecalis not only suppress mucosal immune responses via reducing IgA+ B cells in Peyer's patches but also disrupt intestinal barrier via increasing vinculin acetylation, ultimately promoting inflammation-to-cancer transition in CRC.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.