Plasma exosomal miRNA expression and gut microbiota dysbiosis are associated with cognitive impairment in Alzheimer's disease.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1545690
Kaihao Lin, Wenxia Lin, Zhikai Guo, Cuihong Chen, Liang Chen, Xianbin Cai
{"title":"Plasma exosomal miRNA expression and gut microbiota dysbiosis are associated with cognitive impairment in Alzheimer's disease.","authors":"Kaihao Lin, Wenxia Lin, Zhikai Guo, Cuihong Chen, Liang Chen, Xianbin Cai","doi":"10.3389/fnins.2025.1545690","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The gut microbiota composition and the expression profiles of microRNAs (miRNAs) in the brain tissue, cerebrospinal fluid, and blood of patients with Alzheimer's disease (AD) differ significantly from those with normal cognition function. The study aimed to initially explore the relationship between plasma exosomal microRNAs, gut microbiota, and cognitive impairment, providing insights into the pathogenesis and treatment of AD.</p><p><strong>Methods: </strong>The study enrolled 8 participants with AD and 8 participants with normal cognition. The Mini-Mental State Examination (MMSE) was utilized to evaluate cognitive function. High-throughput sequencing was used to identify differentially expressed miRNAs in plasma exosomes, while metagenomic sequencing was employed to detect differences in the abundance of gut microbiota. Furthermore, the associations among them were analyzed.</p><p><strong>Results: </strong>Four exosomal miRNAs and 14 microbiota taxa, which exhibited differential expression and abundance, respectively, in comparison between AD group and normal cognition group, were identified to be significantly associated with MMSE scores. Notably, the abundance of potential probiotics, including <i>Faecalibacterium prausnitzii</i>, <i>Roseburia intestinalis</i> and <i>Roseburia inulinivorans</i>, which was decreased in AD patients, exhibited positive correlations with specific exosomal miRNAs: <i>Roseburia intestinalis</i> correlated with miR-3120-3p and miR-6529-5p; <i>Roseburia inulinivorans</i> correlated with miR-3120-3p, miR-6529-5p and miR-124-3p; <i>Faecalibacterium prausnitzii</i> correlated with miR-3120-3p.</p><p><strong>Discussion: </strong>The study revealed a close association among gut microbiota, plasma exosomal miRNAs, and cognitive impairment in AD, and suggested that specific components of gut microbiota and exosomal miRNAs may serve as potential biomarkers and therapeutic targets for AD on the microbiota-gut-brain axis.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1545690"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1545690","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The gut microbiota composition and the expression profiles of microRNAs (miRNAs) in the brain tissue, cerebrospinal fluid, and blood of patients with Alzheimer's disease (AD) differ significantly from those with normal cognition function. The study aimed to initially explore the relationship between plasma exosomal microRNAs, gut microbiota, and cognitive impairment, providing insights into the pathogenesis and treatment of AD.

Methods: The study enrolled 8 participants with AD and 8 participants with normal cognition. The Mini-Mental State Examination (MMSE) was utilized to evaluate cognitive function. High-throughput sequencing was used to identify differentially expressed miRNAs in plasma exosomes, while metagenomic sequencing was employed to detect differences in the abundance of gut microbiota. Furthermore, the associations among them were analyzed.

Results: Four exosomal miRNAs and 14 microbiota taxa, which exhibited differential expression and abundance, respectively, in comparison between AD group and normal cognition group, were identified to be significantly associated with MMSE scores. Notably, the abundance of potential probiotics, including Faecalibacterium prausnitzii, Roseburia intestinalis and Roseburia inulinivorans, which was decreased in AD patients, exhibited positive correlations with specific exosomal miRNAs: Roseburia intestinalis correlated with miR-3120-3p and miR-6529-5p; Roseburia inulinivorans correlated with miR-3120-3p, miR-6529-5p and miR-124-3p; Faecalibacterium prausnitzii correlated with miR-3120-3p.

Discussion: The study revealed a close association among gut microbiota, plasma exosomal miRNAs, and cognitive impairment in AD, and suggested that specific components of gut microbiota and exosomal miRNAs may serve as potential biomarkers and therapeutic targets for AD on the microbiota-gut-brain axis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信