Web-based machine learning application for interpretable prediction of prolonged length of stay after lumbar spinal stenosis surgery: a retrospective cohort study with explainable AI.
{"title":"Web-based machine learning application for interpretable prediction of prolonged length of stay after lumbar spinal stenosis surgery: a retrospective cohort study with explainable AI.","authors":"Paierhati Yasheng, Alimujiang Yusufu, Yasenjiang Yimiti, Haopeng Luan, Cong Peng, Xinghua Song","doi":"10.3389/fphys.2025.1542240","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Lumbar spinal stenosis (LSS) is an increasingly important issue related to back pain in elderly patients, resulting in significant socioeconomic burdens. Postoperative complications and socioeconomic effects are evaluated using the clinical parameter of hospital length of stay (LOS). This study aimed to develop a machine learning-based tool that can calculate the risk of prolonged length of stay (PLOS) after surgery and interpret the results.</p><p><strong>Methods: </strong>Patients were registered from the spine surgery department in our hospital. Hospital stays greater than or equal to the 75th percentile for LOS was considered extended PLOS after spine surgery. We screened the variables using the least absolute shrinkage and selection operator (LASSO) and permutation importance value and selected nine features. We then performed hyperparameter selection via grid search with nested cross-validation. Receiver operating characteristics curve, calibration curve and decision curve analysis was carried out to assess model performance. The result of the final selected model was interpreted using Shapley Additive exPlanations (SHAP), and Local Interpretable Model-agnostic Explanations (LIME) were used for model interpretation. To facilitate model utilization, a web application was deployed.</p><p><strong>Results: </strong>A total of 540 patients were involved, and several features were finally selected. The final optimal random forest (RF) model achieved an area under the curve (ROC) of 0.93 on the training set and 0.83 on the test set. Based on both SHAP and LIME analyses, intraoperative blood loss emerged as the most significant contributor to the outcome.</p><p><strong>Conclusion: </strong>Machine learning in association with SHAP and LIME can provide a clear explanation of personalized risk prediction, and spine surgeons can gain a perceptual grasp of the impact of important model components. Utilization and future clinical research of our RF model are made simple and accessible through the web application.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1542240"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1542240","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Lumbar spinal stenosis (LSS) is an increasingly important issue related to back pain in elderly patients, resulting in significant socioeconomic burdens. Postoperative complications and socioeconomic effects are evaluated using the clinical parameter of hospital length of stay (LOS). This study aimed to develop a machine learning-based tool that can calculate the risk of prolonged length of stay (PLOS) after surgery and interpret the results.
Methods: Patients were registered from the spine surgery department in our hospital. Hospital stays greater than or equal to the 75th percentile for LOS was considered extended PLOS after spine surgery. We screened the variables using the least absolute shrinkage and selection operator (LASSO) and permutation importance value and selected nine features. We then performed hyperparameter selection via grid search with nested cross-validation. Receiver operating characteristics curve, calibration curve and decision curve analysis was carried out to assess model performance. The result of the final selected model was interpreted using Shapley Additive exPlanations (SHAP), and Local Interpretable Model-agnostic Explanations (LIME) were used for model interpretation. To facilitate model utilization, a web application was deployed.
Results: A total of 540 patients were involved, and several features were finally selected. The final optimal random forest (RF) model achieved an area under the curve (ROC) of 0.93 on the training set and 0.83 on the test set. Based on both SHAP and LIME analyses, intraoperative blood loss emerged as the most significant contributor to the outcome.
Conclusion: Machine learning in association with SHAP and LIME can provide a clear explanation of personalized risk prediction, and spine surgeons can gain a perceptual grasp of the impact of important model components. Utilization and future clinical research of our RF model are made simple and accessible through the web application.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.