Chu-Huang Chen, Tatsuya Sawamura, Alexander Akhmedov, Ming-Hsien Tsai, Omer Akyol, Akemi Kakino, Huan-Hsing Chiang, Simon Kraler, Thomas F Lüscher
{"title":"Evolving concepts of low-density lipoprotein: From structure to function.","authors":"Chu-Huang Chen, Tatsuya Sawamura, Alexander Akhmedov, Ming-Hsien Tsai, Omer Akyol, Akemi Kakino, Huan-Hsing Chiang, Simon Kraler, Thomas F Lüscher","doi":"10.1111/eci.70019","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low-density lipoprotein (LDL) is a central player in atherogenesis and has long been referred to as 'bad cholesterol.' However, emerging evidence indicates that LDL functions in multifaceted ways beyond cholesterol transport that include roles in inflammation, immunity, and cellular signaling. Understanding LDL's structure, metabolism and function is essential for advancing cardiovascular disease research and therapeutic strategies.</p><p><strong>Methods: </strong>This narrative review examines the history, structural properties, metabolism and functions of LDL in cardiovascular health and disease. We analyze key milestones in LDL research, from its early identification to recent advancements in molecular biology and omics-based investigations. Structural and functional insights are explored through imaging, proteomic analyses and lipidomic profiling, providing a deeper understanding of LDL heterogeneity.</p><p><strong>Results: </strong>Low-density lipoprotein metabolism, from biosynthesis to receptor-mediated clearance, plays a crucial role in lipid homeostasis and atherogenesis. Beyond cholesterol transport, LDL contributes to plaque inflammation, modulates adaptive immunity and regulates cellular signaling pathways. Structural studies reveal its heterogeneous composition, which influences its pathogenic potential. Evolving perspectives on LDL redefine its clinical significance, affecting cardiovascular risk assessment and therapeutic interventions.</p><p><strong>Conclusions: </strong>A holistic understanding of LDL biology challenges traditional perspectives and underscores its complexity in cardiovascular health. Future research should focus on further elucidating LDL's structural and functional diversity to refine risk prediction models and therapeutic strategies, ultimately improving cardiovascular outcomes.</p>","PeriodicalId":12013,"journal":{"name":"European Journal of Clinical Investigation","volume":" ","pages":"e70019"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/eci.70019","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Low-density lipoprotein (LDL) is a central player in atherogenesis and has long been referred to as 'bad cholesterol.' However, emerging evidence indicates that LDL functions in multifaceted ways beyond cholesterol transport that include roles in inflammation, immunity, and cellular signaling. Understanding LDL's structure, metabolism and function is essential for advancing cardiovascular disease research and therapeutic strategies.
Methods: This narrative review examines the history, structural properties, metabolism and functions of LDL in cardiovascular health and disease. We analyze key milestones in LDL research, from its early identification to recent advancements in molecular biology and omics-based investigations. Structural and functional insights are explored through imaging, proteomic analyses and lipidomic profiling, providing a deeper understanding of LDL heterogeneity.
Results: Low-density lipoprotein metabolism, from biosynthesis to receptor-mediated clearance, plays a crucial role in lipid homeostasis and atherogenesis. Beyond cholesterol transport, LDL contributes to plaque inflammation, modulates adaptive immunity and regulates cellular signaling pathways. Structural studies reveal its heterogeneous composition, which influences its pathogenic potential. Evolving perspectives on LDL redefine its clinical significance, affecting cardiovascular risk assessment and therapeutic interventions.
Conclusions: A holistic understanding of LDL biology challenges traditional perspectives and underscores its complexity in cardiovascular health. Future research should focus on further elucidating LDL's structural and functional diversity to refine risk prediction models and therapeutic strategies, ultimately improving cardiovascular outcomes.
期刊介绍:
EJCI considers any original contribution from the most sophisticated basic molecular sciences to applied clinical and translational research and evidence-based medicine across a broad range of subspecialties. The EJCI publishes reports of high-quality research that pertain to the genetic, molecular, cellular, or physiological basis of human biology and disease, as well as research that addresses prevalence, diagnosis, course, treatment, and prevention of disease. We are primarily interested in studies directly pertinent to humans, but submission of robust in vitro and animal work is also encouraged. Interdisciplinary work and research using innovative methods and combinations of laboratory, clinical, and epidemiological methodologies and techniques is of great interest to the journal. Several categories of manuscripts (for detailed description see below) are considered: editorials, original articles (also including randomized clinical trials, systematic reviews and meta-analyses), reviews (narrative reviews), opinion articles (including debates, perspectives and commentaries); and letters to the Editor.