Advances in Imaging Techniques for Assessing Myocardial Microcirculation in People with Diabetes : An Overview of Current Techniques, Emerging Techniques, and Clinical Applications.
{"title":"Advances in Imaging Techniques for Assessing Myocardial Microcirculation in People with Diabetes : An Overview of Current Techniques, Emerging Techniques, and Clinical Applications.","authors":"Tine Willum Hansen, Rasmus S Ripa","doi":"10.1007/s13300-025-01710-1","DOIUrl":null,"url":null,"abstract":"<p><p>Microangiopathy is a key complication of diabetes, adversely effecting several organs including the heart, kidneys, eyes, and nerves. This review focuses on myocardial microvascular dysfunction, a condition characterized by altered vasomotion and long-term structural changes to coronary arterioles, resulting in impaired regulation of blood flow in response to varying oxygen demands of cardiomyocytes. Presence of myocardial microvascular dysfunction is associated with increased risk of cardiovascular disease, even in the absence of obstructive coronary artery disease. Several noninvasive imaging techniques to assess coronary physiology have significantly enhanced our understanding of the myocardial microcirculation. These methods allow for detailed visualization and quantification of blood flow, endothelial function, and inflammation in the microvasculature, providing critical insights into the early stages of microvascular disease in diabetes. A significant area of development is the use of advanced hybrid imaging techniques such as positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI). The integration of advanced imaging technologies with artificial intelligence is also a key future direction. Overall, these advancements aim to improve the early detection and management of microvascular complications in diabetes, ultimately enhancing outcomes and quality of life. The aim of this review is to provide an overview of both established and emerging noninvasive imaging techniques for assessing myocardial microvascular dysfunction.</p>","PeriodicalId":11192,"journal":{"name":"Diabetes Therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13300-025-01710-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Microangiopathy is a key complication of diabetes, adversely effecting several organs including the heart, kidneys, eyes, and nerves. This review focuses on myocardial microvascular dysfunction, a condition characterized by altered vasomotion and long-term structural changes to coronary arterioles, resulting in impaired regulation of blood flow in response to varying oxygen demands of cardiomyocytes. Presence of myocardial microvascular dysfunction is associated with increased risk of cardiovascular disease, even in the absence of obstructive coronary artery disease. Several noninvasive imaging techniques to assess coronary physiology have significantly enhanced our understanding of the myocardial microcirculation. These methods allow for detailed visualization and quantification of blood flow, endothelial function, and inflammation in the microvasculature, providing critical insights into the early stages of microvascular disease in diabetes. A significant area of development is the use of advanced hybrid imaging techniques such as positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI). The integration of advanced imaging technologies with artificial intelligence is also a key future direction. Overall, these advancements aim to improve the early detection and management of microvascular complications in diabetes, ultimately enhancing outcomes and quality of life. The aim of this review is to provide an overview of both established and emerging noninvasive imaging techniques for assessing myocardial microvascular dysfunction.
期刊介绍:
Diabetes Therapy is an international, peer reviewed, rapid-publication (peer review in 2 weeks, published 3–4 weeks from acceptance) journal dedicated to the publication of high-quality clinical (all phases), observational, real-world, and health outcomes research around the discovery, development, and use of therapeutics and interventions (including devices) across all areas of diabetes. Studies relating to diagnostics and diagnosis, pharmacoeconomics, public health, epidemiology, quality of life, and patient care, management, and education are also encouraged.
The journal is of interest to a broad audience of healthcare professionals and publishes original research, reviews, communications and letters. The journal is read by a global audience and receives submissions from all over the world. Diabetes Therapy will consider all scientifically sound research be it positive, confirmatory or negative data. Submissions are welcomed whether they relate to an international and/or a country-specific audience, something that is crucially important when researchers are trying to target more specific patient populations. This inclusive approach allows the journal to assist in the dissemination of all scientifically and ethically sound research.