{"title":"From specialization to broad adoption: Key trends in droplet microfluidic innovations enhancing accessibility to non-experts.","authors":"Jolien Breukers, Karen Ven, Wannes Verbist, Iene Rutten, Jeroen Lammertyn","doi":"10.1063/5.0242599","DOIUrl":null,"url":null,"abstract":"<p><p>Droplet microfluidics has emerged as a versatile and powerful tool for various analytical applications, including single-cell studies, synthetic biology, directed evolution, and diagnostics. Initially, access to droplet microfluidics was predominantly limited to specialized technology labs. However, the landscape is shifting with the increasing availability of commercialized droplet manipulation technologies, thereby expanding its use to non-specialized labs. Although these commercial solutions offer robust platforms, their adaptability is often constrained compared to in-house developed devices. Consequently, both within the industry and academia, significant efforts are being made to further enhance the robustness and automation of droplet-based platforms, not only to facilitate technology transfer to non-expert laboratories but also to reduce experimental failures. This Perspective article provides an overview of recent advancements aimed at increasing the robustness and accessibility of systems enabling complex droplet manipulations. The discussion encompasses diverse aspects such as droplet generation, reagent addition, splitting, washing, incubation, sorting, and dispensing. Moreover, alternative techniques like double emulsions and hydrogel capsules, minimizing or eliminating the need for microfluidic operations by the end user, are explored. These developments are foreseen to facilitate the integration of intricate droplet manipulations by non-expert users in their workflows, thereby fostering broader and faster adoption across scientific domains.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"19 2","pages":"021302"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0242599","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Droplet microfluidics has emerged as a versatile and powerful tool for various analytical applications, including single-cell studies, synthetic biology, directed evolution, and diagnostics. Initially, access to droplet microfluidics was predominantly limited to specialized technology labs. However, the landscape is shifting with the increasing availability of commercialized droplet manipulation technologies, thereby expanding its use to non-specialized labs. Although these commercial solutions offer robust platforms, their adaptability is often constrained compared to in-house developed devices. Consequently, both within the industry and academia, significant efforts are being made to further enhance the robustness and automation of droplet-based platforms, not only to facilitate technology transfer to non-expert laboratories but also to reduce experimental failures. This Perspective article provides an overview of recent advancements aimed at increasing the robustness and accessibility of systems enabling complex droplet manipulations. The discussion encompasses diverse aspects such as droplet generation, reagent addition, splitting, washing, incubation, sorting, and dispensing. Moreover, alternative techniques like double emulsions and hydrogel capsules, minimizing or eliminating the need for microfluidic operations by the end user, are explored. These developments are foreseen to facilitate the integration of intricate droplet manipulations by non-expert users in their workflows, thereby fostering broader and faster adoption across scientific domains.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...