Luis Giovani de Oliveira Guardalini, Felipe Moura Dias, Samanta Omae Camalhonte, Jaci Leme, Thaissa Consoni Bernardino, Felipe Soares Sposito, Eduardo Dias, Renato Mancini Astray, Aldo Tonso, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez
{"title":"Multiplicity of infection and culture medium on the SARS-CoV-2 virus like-particles production by baculovirus/insect system.","authors":"Luis Giovani de Oliveira Guardalini, Felipe Moura Dias, Samanta Omae Camalhonte, Jaci Leme, Thaissa Consoni Bernardino, Felipe Soares Sposito, Eduardo Dias, Renato Mancini Astray, Aldo Tonso, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez","doi":"10.1007/s10529-025-03572-w","DOIUrl":null,"url":null,"abstract":"<p><p>This work aimed to assess the SARS-CoV-2 structural proteins' expression and virus-like particles (VLP) production by Baculovirus/Insect cell platform using two levels of Multiplicity of Infection (MOI), and two culture media, one of them a serum-free medium and the other one chemically defined. Two SARS-CoV-2 VLP were obtained from Sf9 cells coinfection using in both cases, three monocistronic recombinant baculoviruses holding the genes of Nucleocapsid (N; MOI = 2 or 0.2), Membrane (M; MOI = 1 or 0.1), and Envelope (E; MOI = 1 or 0.1) viral proteins, and the fourth one was changed between a baculovirus bearing Spike protein (S; MOI = 3 or 0.3) or receptor-binding domain (RBD; MOI = 3 or 0.3) genes of SARS-CoV-2. Similar performance was verified for both culture media in SARS-CoV-2 VLP production bearing four structural virus proteins or RBD domain. The SARS-CoV-2 structural proteins' expression was comparable at different MOIs (tenfold) as well as SARS-CoV-2 VLP size (around 100 nm). The increase in specific death rates over the coinfection phase was confirmed in relatively high MOI assays. This finding was related to an exponential virus titer profile for high MOIs over the entire infection phase, meanwhile, a viral peak was observed at low MOIs, confirming a secondary infection. The SARS-CoV-2 VLP improved production carrying immunogenic S protein was confirmed concerning others holding RBD. However, the protein composition of produced VLP should be studied further to assess the VLP homogeneity when different culture media and MOIs are used.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"32"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03572-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work aimed to assess the SARS-CoV-2 structural proteins' expression and virus-like particles (VLP) production by Baculovirus/Insect cell platform using two levels of Multiplicity of Infection (MOI), and two culture media, one of them a serum-free medium and the other one chemically defined. Two SARS-CoV-2 VLP were obtained from Sf9 cells coinfection using in both cases, three monocistronic recombinant baculoviruses holding the genes of Nucleocapsid (N; MOI = 2 or 0.2), Membrane (M; MOI = 1 or 0.1), and Envelope (E; MOI = 1 or 0.1) viral proteins, and the fourth one was changed between a baculovirus bearing Spike protein (S; MOI = 3 or 0.3) or receptor-binding domain (RBD; MOI = 3 or 0.3) genes of SARS-CoV-2. Similar performance was verified for both culture media in SARS-CoV-2 VLP production bearing four structural virus proteins or RBD domain. The SARS-CoV-2 structural proteins' expression was comparable at different MOIs (tenfold) as well as SARS-CoV-2 VLP size (around 100 nm). The increase in specific death rates over the coinfection phase was confirmed in relatively high MOI assays. This finding was related to an exponential virus titer profile for high MOIs over the entire infection phase, meanwhile, a viral peak was observed at low MOIs, confirming a secondary infection. The SARS-CoV-2 VLP improved production carrying immunogenic S protein was confirmed concerning others holding RBD. However, the protein composition of produced VLP should be studied further to assess the VLP homogeneity when different culture media and MOIs are used.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.