Development of a fully automated latex-enhanced immunoturbidimetric method for quantitative serum Lp(a) measurement.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yanyan Liu, Meijiao Li, Hao Zhang, Le Gao, Jitao Liu, Yue Hou, Jiancheng Xu
{"title":"Development of a fully automated latex-enhanced immunoturbidimetric method for quantitative serum Lp(a) measurement.","authors":"Yanyan Liu, Meijiao Li, Hao Zhang, Le Gao, Jitao Liu, Yue Hou, Jiancheng Xu","doi":"10.1007/s10529-025-03564-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lipoprotein (a) [Lp(a)] is a critical factor in cardiovascular health, composed of low-density lipoprotein-like particles bound to apolipoprotein (a). Elevated Lp(a) levels are associated with an increased risk of cardiovascular diseases (CVD), accelerating disease progression and raising CVD-related mortality. However, the lack of standardized measurement methods for Lp(a) contributes to diagnostic uncertainties in this area.</p><p><strong>Method: </strong>A quantitative measurement method for serum Lp(a) was developed using fully automated latex-enhanced particle immunoturbidimetry, marking a significant advancement in diagnostic capabilities. Key parameters, including repeatability, stability, linearity, detection limit, interference, and method comparison, were evaluated to ensure the assay's reliability and accuracy.</p><p><strong>Result: </strong>Lp(a) in samples was detected by carboxylated latex particles (95 nm in diameter) covalently coated with anti-Lp(a) antibodies. Lp(a) concentration was quantified by measuring the turbidity changes caused by agglutination at 600 nm. This method provides rapid, accurate, and fully automated measurements on the Hitachi 7100 automatic biochemical analyzer. With intra-batch precision CV% of 1.10% and inter-batch precision CV% of 1.79%, the method demonstrates reliable performance with Randox biochemical quality control samples. It has a detection limit of 7 mg/L and a high correlation coefficient (R<sup>2</sup> = 0.9946) within the 0-1500 mg/L range. Minimal interference from bilirubin, fat emulsion, hemoglobin, and ascorbic acid was observed. Additionally, it shows strong correlation (R<sup>2</sup> = 0.9972) with a commercially available latex-enhanced immunoturbidimetric Lp(a) assay reagent, confirming its comparability and clinical suitability.</p><p><strong>Conclusion: </strong>The quantitative serum Lp(a) determination method based on latex-enhanced immunoturbidimetry offers numerous advantages. It provides rapid, accurate, and automated results, making it ideal for routine clinical testing. The method effectively measures Lp(a) in serum samples by leveraging the interaction between Lp(a) and latex particles.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"31"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03564-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lipoprotein (a) [Lp(a)] is a critical factor in cardiovascular health, composed of low-density lipoprotein-like particles bound to apolipoprotein (a). Elevated Lp(a) levels are associated with an increased risk of cardiovascular diseases (CVD), accelerating disease progression and raising CVD-related mortality. However, the lack of standardized measurement methods for Lp(a) contributes to diagnostic uncertainties in this area.

Method: A quantitative measurement method for serum Lp(a) was developed using fully automated latex-enhanced particle immunoturbidimetry, marking a significant advancement in diagnostic capabilities. Key parameters, including repeatability, stability, linearity, detection limit, interference, and method comparison, were evaluated to ensure the assay's reliability and accuracy.

Result: Lp(a) in samples was detected by carboxylated latex particles (95 nm in diameter) covalently coated with anti-Lp(a) antibodies. Lp(a) concentration was quantified by measuring the turbidity changes caused by agglutination at 600 nm. This method provides rapid, accurate, and fully automated measurements on the Hitachi 7100 automatic biochemical analyzer. With intra-batch precision CV% of 1.10% and inter-batch precision CV% of 1.79%, the method demonstrates reliable performance with Randox biochemical quality control samples. It has a detection limit of 7 mg/L and a high correlation coefficient (R2 = 0.9946) within the 0-1500 mg/L range. Minimal interference from bilirubin, fat emulsion, hemoglobin, and ascorbic acid was observed. Additionally, it shows strong correlation (R2 = 0.9972) with a commercially available latex-enhanced immunoturbidimetric Lp(a) assay reagent, confirming its comparability and clinical suitability.

Conclusion: The quantitative serum Lp(a) determination method based on latex-enhanced immunoturbidimetry offers numerous advantages. It provides rapid, accurate, and automated results, making it ideal for routine clinical testing. The method effectively measures Lp(a) in serum samples by leveraging the interaction between Lp(a) and latex particles.

开发全自动乳胶增强免疫比浊法定量测定血清Lp(a)。
背景:脂蛋白(a) [Lp(a)]是心血管健康的关键因素,由与载脂蛋白(a)结合的低密度脂蛋白样颗粒组成。脂蛋白(a)水平升高与心血管疾病(CVD)风险增加、疾病进展加速和CVD相关死亡率升高相关。然而,缺乏标准化的Lp(a)测量方法导致了该领域诊断的不确定性。方法:建立了一种全自动乳胶增强颗粒免疫比浊法测定血清Lp(A)的定量方法,标志着诊断能力的重大进步。对重复性、稳定性、线性、检出限、干扰和方法比较等关键参数进行评价,以确保测定的可靠性和准确性。结果:用包被抗Lp(a)抗体的羧基化乳胶颗粒(直径95 nm)检测样品中的Lp(a)。在600 nm处通过测定凝集引起的浊度变化来定量Lp(a)浓度。该方法在日立7100全自动生化分析仪上提供快速、准确和全自动的测量。该方法批内精密度CV%为1.10%,批间精密度CV%为1.79%,对Randox生化质控样品具有可靠的性能。检测限为7 mg/L,在0 ~ 1500 mg/L范围内具有较高的相关系数(R2 = 0.9946)。观察到胆红素、脂肪乳、血红蛋白和抗坏血酸的干扰最小。此外,它与市售的乳胶增强免疫比浊Lp(a)测定试剂具有很强的相关性(R2 = 0.9972),证实了其可比性和临床适用性。结论:基于乳胶增强免疫比浊法的血清Lp(a)定量测定方法具有诸多优点。它提供快速,准确和自动化的结果,使其成为常规临床测试的理想选择。该方法通过利用Lp(a)和乳胶颗粒之间的相互作用,有效地测量血清样品中的Lp(a)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信