{"title":"Addressing grading bias in rock climbing: machine and deep learning approaches.","authors":"B O'Mara, M S Mahmud","doi":"10.3389/fspor.2024.1512010","DOIUrl":null,"url":null,"abstract":"<p><p>The determination rock climbing route difficulty is notoriously subjective. While there is no official standard for determining the difficulty of a rock climbing route, various difficulty rating scales exist. But as the sport gains more popularity and prominence on the international stage at the Olympic Games, the need for standardized determination of route difficulty becomes more important. In commercial climbing gyms, consistency and accuracy in route production are crucial for success. Route setters often rely on personal judgment when determining route difficulty, but the success of commercial climbing gyms requires their objectivity in creating diverse, inclusive, and accurate routes. Machine and deep learning techniques have the potential to introduce a standardized form of route difficulty determination. This survey review categorizes machine and deep learning approaches taken, identifies the methods and algorithms used, reports their degree of success, and proposes areas of future work for determining route difficulty. The primary three approaches were from a route-centric, climber-centric, or path finding and path generation context. Of these, the most optimal methods used natural language processing or recurrent neural network algorithms. From these methods, it is argued that the objective difficulty of a rock climbing route has been best determined by route-centric, natural-language-like approaches.</p>","PeriodicalId":12716,"journal":{"name":"Frontiers in Sports and Active Living","volume":"6 ","pages":"1512010"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sports and Active Living","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspor.2024.1512010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The determination rock climbing route difficulty is notoriously subjective. While there is no official standard for determining the difficulty of a rock climbing route, various difficulty rating scales exist. But as the sport gains more popularity and prominence on the international stage at the Olympic Games, the need for standardized determination of route difficulty becomes more important. In commercial climbing gyms, consistency and accuracy in route production are crucial for success. Route setters often rely on personal judgment when determining route difficulty, but the success of commercial climbing gyms requires their objectivity in creating diverse, inclusive, and accurate routes. Machine and deep learning techniques have the potential to introduce a standardized form of route difficulty determination. This survey review categorizes machine and deep learning approaches taken, identifies the methods and algorithms used, reports their degree of success, and proposes areas of future work for determining route difficulty. The primary three approaches were from a route-centric, climber-centric, or path finding and path generation context. Of these, the most optimal methods used natural language processing or recurrent neural network algorithms. From these methods, it is argued that the objective difficulty of a rock climbing route has been best determined by route-centric, natural-language-like approaches.