Two-step ultrasonic cavitation controlled delivery of brain exogenous nucleic acids for ischemic stroke using acoustic-cationic-polymeric-nanodroplets.
{"title":"Two-step ultrasonic cavitation controlled delivery of brain exogenous nucleic acids for ischemic stroke using acoustic-cationic-polymeric-nanodroplets.","authors":"Wei Dong, Guihu Wang, Yichao Chai, Wenjuan Li, Shichang Liu, Huasheng Liu, Wenlei Guo, Senyang Li, Xinrui He, Mingxi Wan, Zongfang Li, Yujin Zong","doi":"10.1007/s13346-025-01828-6","DOIUrl":null,"url":null,"abstract":"<p><p>Inefficient and low-precision delivery of exogenous nucleic acids (ENA) severely limits gene therapy on ischemic stroke (IS). Two problems need to be urgently addressed to improve the efficacy of gene therapy; first, the blood brain barrier (BBB) should be open to promote the accumulation of ENA or genetic material carriers in the ischemic brain parenchyma, and second, the efficient delivery of ENA into the ischemic cells. Previous studies applied ultrasonic cavitation either for opening BBB or for inducing sonoporation to deliver genetic materials into cells. However, the effectiveness of the two-step ultrasonic cavitation to deliver ENA in the brain remains unclear, let alone the genetic materials to be controllably delivered into the ischemic brain parenchyma of the IS. This study systematically explored the BBB opening and ENA delivery by the two-step ultrasonic cavitation using artificial acoustic-cationic-polymeric-nanodroplets (ACPNs). The results demonstrated that the first focused ultrasound (FUS), set at parameters of 3.3 MPa, 20 Hz, 200 cycles and 5 s, stimulating intravascular ACPNs cavitation effectively opened BBB to allow nonactivated ACPN extravasation and accumulation into the ischemic brain parenchyma. Then, the extravascular ACPNs enhanced the second ultrasonic cavitation that noninvasively and efficiently controlled ENA delivery to the ischemic cells through sonoporation, particularly applying 3.3 MPa, 60 Hz, 200 cycles and 9 s to control FAM-eNA delivery, and 3.6 MPa, 20 Hz, 200 cycles and 7 s for pEGFP-C1 controlled delivery. Overall, the two-step ultrasonic cavitation represented a potential strategy for IS-targeted ENA controlled delivery.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01828-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inefficient and low-precision delivery of exogenous nucleic acids (ENA) severely limits gene therapy on ischemic stroke (IS). Two problems need to be urgently addressed to improve the efficacy of gene therapy; first, the blood brain barrier (BBB) should be open to promote the accumulation of ENA or genetic material carriers in the ischemic brain parenchyma, and second, the efficient delivery of ENA into the ischemic cells. Previous studies applied ultrasonic cavitation either for opening BBB or for inducing sonoporation to deliver genetic materials into cells. However, the effectiveness of the two-step ultrasonic cavitation to deliver ENA in the brain remains unclear, let alone the genetic materials to be controllably delivered into the ischemic brain parenchyma of the IS. This study systematically explored the BBB opening and ENA delivery by the two-step ultrasonic cavitation using artificial acoustic-cationic-polymeric-nanodroplets (ACPNs). The results demonstrated that the first focused ultrasound (FUS), set at parameters of 3.3 MPa, 20 Hz, 200 cycles and 5 s, stimulating intravascular ACPNs cavitation effectively opened BBB to allow nonactivated ACPN extravasation and accumulation into the ischemic brain parenchyma. Then, the extravascular ACPNs enhanced the second ultrasonic cavitation that noninvasively and efficiently controlled ENA delivery to the ischemic cells through sonoporation, particularly applying 3.3 MPa, 60 Hz, 200 cycles and 9 s to control FAM-eNA delivery, and 3.6 MPa, 20 Hz, 200 cycles and 7 s for pEGFP-C1 controlled delivery. Overall, the two-step ultrasonic cavitation represented a potential strategy for IS-targeted ENA controlled delivery.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.