Beta-lactam combination treatment overcomes rifampicin resistance in Mycobacterium tuberculosis.

IF 3.7 3区 医学 Q2 INFECTIOUS DISEASES
Diana H Quan, Trixie Wang, Elena Martinez, Hanna Y Kim, Vitali Sintchenko, Warwick J Britton, James A Triccas, Jan-Willem Alffenaar
{"title":"Beta-lactam combination treatment overcomes rifampicin resistance in Mycobacterium tuberculosis.","authors":"Diana H Quan, Trixie Wang, Elena Martinez, Hanna Y Kim, Vitali Sintchenko, Warwick J Britton, James A Triccas, Jan-Willem Alffenaar","doi":"10.1007/s10096-025-05062-3","DOIUrl":null,"url":null,"abstract":"<p><p>The significant global impact of tuberculosis (TB) on human health is exacerbated by the increasing prevalence of multi-drug resistant tuberculosis (MDR-TB) and the challenges of novel drug discovery for the treatment of drug-susceptible and drug-resistant strains of M. tuberculosis. Rifampicin is a key first-line TB drug and rifampicin resistance is a major obstacle to treating MDR-TB. Utilising existing antimicrobial drugs to supplement combination therapy and overcome rifampicin resistance is a promising solution due to their widespread availability and proven clinical safety profile. Therefore, this study aimed to explore the feasibility of using beta-lactam/beta-lactamase inhibitor combinations with rifampicin to inhibit the growth of multidrug-resistant M. tuberculosis. Based on inhibitory concentration (IC), oral bioavailability, pricing, commercial availability, five beta-lactams and the beta-lactamase inhibitor, clavulanate, were selected for testing. These were combined with rifampicin for in vitro testing against Mycobacterium tuberculosis H37Rv. Resazurin assays and colony forming unit (CFU) enumeration were used to quantify drug efficacy, Chou-Talalay calculations were performed to identify drug synergy and Chou-Martin calculations were performed to quantify drug dose reduction index (DRI). The combination of tebipenem-clavulanate/rifampicin and cephradine-clavulanate/rifampicin were found to be synergistic and highly effective against clinical isolates of MDR-TB, overcoming rifampicin resistance in vitro. Beta-lactam synergy may provide viable combination therapies with rifampicin to address the issue of drug resistance in TB.</p>","PeriodicalId":11782,"journal":{"name":"European Journal of Clinical Microbiology & Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Microbiology & Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10096-025-05062-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

The significant global impact of tuberculosis (TB) on human health is exacerbated by the increasing prevalence of multi-drug resistant tuberculosis (MDR-TB) and the challenges of novel drug discovery for the treatment of drug-susceptible and drug-resistant strains of M. tuberculosis. Rifampicin is a key first-line TB drug and rifampicin resistance is a major obstacle to treating MDR-TB. Utilising existing antimicrobial drugs to supplement combination therapy and overcome rifampicin resistance is a promising solution due to their widespread availability and proven clinical safety profile. Therefore, this study aimed to explore the feasibility of using beta-lactam/beta-lactamase inhibitor combinations with rifampicin to inhibit the growth of multidrug-resistant M. tuberculosis. Based on inhibitory concentration (IC), oral bioavailability, pricing, commercial availability, five beta-lactams and the beta-lactamase inhibitor, clavulanate, were selected for testing. These were combined with rifampicin for in vitro testing against Mycobacterium tuberculosis H37Rv. Resazurin assays and colony forming unit (CFU) enumeration were used to quantify drug efficacy, Chou-Talalay calculations were performed to identify drug synergy and Chou-Martin calculations were performed to quantify drug dose reduction index (DRI). The combination of tebipenem-clavulanate/rifampicin and cephradine-clavulanate/rifampicin were found to be synergistic and highly effective against clinical isolates of MDR-TB, overcoming rifampicin resistance in vitro. Beta-lactam synergy may provide viable combination therapies with rifampicin to address the issue of drug resistance in TB.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
2.20%
发文量
138
审稿时长
1 months
期刊介绍: EJCMID is an interdisciplinary journal devoted to the publication of communications on infectious diseases of bacterial, viral and parasitic origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信