Genome-wide identification of the UGT genes family in Acer rubrum and role of ArUGT52 in anthocyanin biosynthesis under cold stress.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Khan Arif Kamal, Faheem Afzal Shah, Yue Zhao, Zhu Chen, Songling Fu, Zhiyong Zhu, Jie Ren, Hua Liu
{"title":"Genome-wide identification of the UGT genes family in Acer rubrum and role of ArUGT52 in anthocyanin biosynthesis under cold stress.","authors":"Khan Arif Kamal, Faheem Afzal Shah, Yue Zhao, Zhu Chen, Songling Fu, Zhiyong Zhu, Jie Ren, Hua Liu","doi":"10.1186/s12870-024-06043-y","DOIUrl":null,"url":null,"abstract":"<p><p>Acer rubrum is a widespread Acer species valued for its vibrant autumn foliage. The UGT (UDP-glycosyltransferase) gene family is integral to the biosynthesis of anthocyanins, the pigments responsible for leaf coloration. This study aimed to comprehensively identify and characterize the UGT gene family in the A. rubrum genome. The results of the phylogenetic analysis of 249 ArUGTs revealed 18 distinct subgroups. Conserved motif analysis demonstrated structural similarities within subgroups. Gene duplication analysis identified 21 tandem and 66 segmental duplication events across chromosomes. Transcriptomic data from autumn leaves of different colours and under low-temperature stress were analyzed for ArUGT expression patterns. Compared to controls, 44 UGTs were upregulated and 99 downregulated in yellow leaves, while 59 were upregulated and 84 downregulated in red leaves. Low-temperature treatments showed upregulation of 18 UGTs at 10 °C and 40 UGTs at 4 °C. Downregulation was observed in 7 UGTs at 10 °C and 33 UGTs at 4 °C. Among all UGT genes, ArUGT52 was common in highly expressed genes in both red leaf and low-temperature stress. Furthermore, the transient overexpression of ArUGT52 in tobacco plants demonstrated cytoplasmic localization and a marked increase in anthocyanin levels under cold stress. In vitro, biochemical assay results indicated that the ArUGT52 was involved in anthocyanin biosynthesis via the glucosylation of anthocyanidins. This study provides insights into the genetic mechanisms of leaf coloration and the potential of UGT manipulation for enhancing plant responses to low-temperature stress. These findings have applications in ornamental horticulture and agriculture.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"288"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-06043-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Acer rubrum is a widespread Acer species valued for its vibrant autumn foliage. The UGT (UDP-glycosyltransferase) gene family is integral to the biosynthesis of anthocyanins, the pigments responsible for leaf coloration. This study aimed to comprehensively identify and characterize the UGT gene family in the A. rubrum genome. The results of the phylogenetic analysis of 249 ArUGTs revealed 18 distinct subgroups. Conserved motif analysis demonstrated structural similarities within subgroups. Gene duplication analysis identified 21 tandem and 66 segmental duplication events across chromosomes. Transcriptomic data from autumn leaves of different colours and under low-temperature stress were analyzed for ArUGT expression patterns. Compared to controls, 44 UGTs were upregulated and 99 downregulated in yellow leaves, while 59 were upregulated and 84 downregulated in red leaves. Low-temperature treatments showed upregulation of 18 UGTs at 10 °C and 40 UGTs at 4 °C. Downregulation was observed in 7 UGTs at 10 °C and 33 UGTs at 4 °C. Among all UGT genes, ArUGT52 was common in highly expressed genes in both red leaf and low-temperature stress. Furthermore, the transient overexpression of ArUGT52 in tobacco plants demonstrated cytoplasmic localization and a marked increase in anthocyanin levels under cold stress. In vitro, biochemical assay results indicated that the ArUGT52 was involved in anthocyanin biosynthesis via the glucosylation of anthocyanidins. This study provides insights into the genetic mechanisms of leaf coloration and the potential of UGT manipulation for enhancing plant responses to low-temperature stress. These findings have applications in ornamental horticulture and agriculture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信