{"title":"The Nuclear Effector MiISE23 From Meloidogyne incognita Targets JAZ Proteins and Suppresses Jasmonate Signalling, Increasing Host Susceptibility.","authors":"Qianqian Shi, Rui Liu, Lijun Jiang, Shasha Gao, Juan Ma, Xiaoxuan Tian, Chunyu Jiang, Chen Liang, Honghai Zhao, Wenwen Song, Bingyan Xie","doi":"10.1111/pce.15461","DOIUrl":null,"url":null,"abstract":"<p><p>Meloidogyne incognita is an economically important plant-parasitic nematode that can infect thousands of different plant species. During its interaction with host plants, M. incognita synthesises numerous effectors in oesophageal glands, which are then secreted into plant tissues. Here, we characterised the effector MiISE23 and found that it could suppress plant immune responses. In situ hybridisation showed that MiISE23 was expressed in the subventral glands. Transgenic Arabidopsis plants expressing MiISE23 were more susceptible to M. incognita, whereas host-derived RNAi of MiISE23 was found to decrease M. incognita infection in Arabidopsis. In vitro and in vivo experiments showed that MiISE23 repressed jasmonate (JA) signalling by directly interacting with and suppressing jasmonoyl-isoleucine (JA-Ile)-induced degradation of jasmonate ZIM-domain proteins by COI1. The expression of MiISE23 in Arabidopsis repressed the expression of JA-responsive genes and reduced the levels of endogenous JA-Ile. AtJAZ6 transgenic lines of Arabidopsis showed increased susceptibility to M. incognita infection. Collectively, our results show that MiISE23 stabilises JAZ proteins and interferes with JA signalling, revealing a novel mechanism utilised by root-knot nematodes to hijack phytohormone signalling and promote parasitism.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15461","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Meloidogyne incognita is an economically important plant-parasitic nematode that can infect thousands of different plant species. During its interaction with host plants, M. incognita synthesises numerous effectors in oesophageal glands, which are then secreted into plant tissues. Here, we characterised the effector MiISE23 and found that it could suppress plant immune responses. In situ hybridisation showed that MiISE23 was expressed in the subventral glands. Transgenic Arabidopsis plants expressing MiISE23 were more susceptible to M. incognita, whereas host-derived RNAi of MiISE23 was found to decrease M. incognita infection in Arabidopsis. In vitro and in vivo experiments showed that MiISE23 repressed jasmonate (JA) signalling by directly interacting with and suppressing jasmonoyl-isoleucine (JA-Ile)-induced degradation of jasmonate ZIM-domain proteins by COI1. The expression of MiISE23 in Arabidopsis repressed the expression of JA-responsive genes and reduced the levels of endogenous JA-Ile. AtJAZ6 transgenic lines of Arabidopsis showed increased susceptibility to M. incognita infection. Collectively, our results show that MiISE23 stabilises JAZ proteins and interferes with JA signalling, revealing a novel mechanism utilised by root-knot nematodes to hijack phytohormone signalling and promote parasitism.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.