{"title":"Virulence genes, efflux pumps, and molecular typing of Klebsiella pneumoniae isolates from North Iran.","authors":"Arta Hafezi Birgani, Hamid Reza Goli, Seyed Davar Siadat, Abolfazl Fateh, Vajihe Sadat Nikbin, Fatemeh Sakhaee, Fatemeh Ashrafian, Mohammad Reza Haghshenas, Mehrdad Gholami","doi":"10.1186/s13568-025-01845-1","DOIUrl":null,"url":null,"abstract":"<p><p>Resistant and virulent strains of Klebsiella pneumoniae (K. pneumoniae) are rapidly disseminated among both hospitalized patients and communities, therefore, the identification of the genes responsible for virulence and resistance, along with the clonal relatedness of these strains, could be beneficial in the management of the dissemination of these strains among patients. The aim of the present study was to assess antibiotic susceptibility, virulence and resistance genes, as well as the genetic relatedness of K. pneumoniae strains isolated from patients admitted to four hospitals in Mazandaran, Iran. A total of 95 K. pneumoniae were gathered from hospitalized patients. All isolates were confirmed using biochemical and conventional microbiological methods, followed by the assessment of susceptibility patterns through disk diffusion and the detection of resistance and virulence genes using conventional PCR. The genetic diversity of clinical isolates was determined using the Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR) technique. The resistance frequencies varied, with the highest being for ampicillin/sulbactam (95.8%) and the lowest for fosfomycin (3.2%). Only one strain displayed a non-MDR profile against all antibiotics tested. Virulence-associated genes were detected, such as mrkD (90.5%), fimH (80%), entB (92.6%), iutA (25.3%), and ybtS (68.4%). Genes associated with efflux pumps and outer membrane porins included acrAB (98.9%), tolC (95.8%), mdtK (83.2%), ompK35 (95.8%), and ompK36 (92.6%). Based on ERIC-PCR patterns with a 90% similarity, the isolates were categorized into 17 distinct clusters. While the majority of isolates had a same profile and were grouped in the predominant pattern, 11 isolates were identified as singletons. Our study indicates that the prevalence of MDR K. pneumoniae carrying virulence genes and exhibiting close relatedness underscores the urgent need for effective strategies to control and prevent infections caused by K. pneumoniae.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"36"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01845-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistant and virulent strains of Klebsiella pneumoniae (K. pneumoniae) are rapidly disseminated among both hospitalized patients and communities, therefore, the identification of the genes responsible for virulence and resistance, along with the clonal relatedness of these strains, could be beneficial in the management of the dissemination of these strains among patients. The aim of the present study was to assess antibiotic susceptibility, virulence and resistance genes, as well as the genetic relatedness of K. pneumoniae strains isolated from patients admitted to four hospitals in Mazandaran, Iran. A total of 95 K. pneumoniae were gathered from hospitalized patients. All isolates were confirmed using biochemical and conventional microbiological methods, followed by the assessment of susceptibility patterns through disk diffusion and the detection of resistance and virulence genes using conventional PCR. The genetic diversity of clinical isolates was determined using the Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR) technique. The resistance frequencies varied, with the highest being for ampicillin/sulbactam (95.8%) and the lowest for fosfomycin (3.2%). Only one strain displayed a non-MDR profile against all antibiotics tested. Virulence-associated genes were detected, such as mrkD (90.5%), fimH (80%), entB (92.6%), iutA (25.3%), and ybtS (68.4%). Genes associated with efflux pumps and outer membrane porins included acrAB (98.9%), tolC (95.8%), mdtK (83.2%), ompK35 (95.8%), and ompK36 (92.6%). Based on ERIC-PCR patterns with a 90% similarity, the isolates were categorized into 17 distinct clusters. While the majority of isolates had a same profile and were grouped in the predominant pattern, 11 isolates were identified as singletons. Our study indicates that the prevalence of MDR K. pneumoniae carrying virulence genes and exhibiting close relatedness underscores the urgent need for effective strategies to control and prevent infections caused by K. pneumoniae.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.