Modulation of satiety hormones by Bacteroides thetaiotaomicron, Bacteroides fragilis and their derivatives.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Somayeh Vaezijoze, Shiva Irani, Seyed Davar Siadat, Mohammadreza Zali
{"title":"Modulation of satiety hormones by Bacteroides thetaiotaomicron, Bacteroides fragilis and their derivatives.","authors":"Somayeh Vaezijoze, Shiva Irani, Seyed Davar Siadat, Mohammadreza Zali","doi":"10.1186/s13568-025-01852-2","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a complex disorder influenced by various factors, including gut microbiota, which play a crucial role in metabolic regulation. This study is aimed to investigate the effects of Bacteroides thetaiotaomicron and Bacteroides fragilis, along with their derivatives-outer membrane vesicles (OMVs) and cell-free supernatant (CFS)-on the expression and secretion of satiety hormones in the murine intestinal secretin tumor cell line (STC-1). We examined the expression of peptide YY (PYY), glucagon-like peptide-1 and -2 (GLP-1 and GLP-2, encoded by the GCG gene), the enzyme prohormone convertase-1 (PC1/PCSK1 gene), and the receptors G protein-coupled receptor 119 and 120 (GPR119 and GPR120), and G-protein-coupled bile acid receptor (TGR5). Our results demonstrate that live B. fragilis significantly increased PYY expression and secretion. B. thetaiotaomicron CFS notably upregulated GCG, PCSK1, GPR119, GPR120, and TGR5 expression, leading to elevated GLP-1 secretion. B. fragilis CFS decreased GPR119, GPR120, and GCG expression. OMVs from B. thetaiotaomicron at 50 µg/ml significantly enhanced GCG and PCSK1 expression, while B. fragilis OMVs generally decreased gene expression, except for PYY protein abundance. Inactive B. thetaiotaomicron and B. fragilis increased GCG mRNA levels and GLP-1 concentration, with inactive B. fragilis also elevating GLP-2 protein levels.This study suggests that B. thetaiotaomicron and its derivatives, particularly CFS and OMVs, have potential as next-generation probiotics, postbiotics, and paraprobiotics for modulating satiety hormones and managing obesity. Further research is warranted to explore their mechanisms and therapeutic applications in vivo.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"41"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01852-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity is a complex disorder influenced by various factors, including gut microbiota, which play a crucial role in metabolic regulation. This study is aimed to investigate the effects of Bacteroides thetaiotaomicron and Bacteroides fragilis, along with their derivatives-outer membrane vesicles (OMVs) and cell-free supernatant (CFS)-on the expression and secretion of satiety hormones in the murine intestinal secretin tumor cell line (STC-1). We examined the expression of peptide YY (PYY), glucagon-like peptide-1 and -2 (GLP-1 and GLP-2, encoded by the GCG gene), the enzyme prohormone convertase-1 (PC1/PCSK1 gene), and the receptors G protein-coupled receptor 119 and 120 (GPR119 and GPR120), and G-protein-coupled bile acid receptor (TGR5). Our results demonstrate that live B. fragilis significantly increased PYY expression and secretion. B. thetaiotaomicron CFS notably upregulated GCG, PCSK1, GPR119, GPR120, and TGR5 expression, leading to elevated GLP-1 secretion. B. fragilis CFS decreased GPR119, GPR120, and GCG expression. OMVs from B. thetaiotaomicron at 50 µg/ml significantly enhanced GCG and PCSK1 expression, while B. fragilis OMVs generally decreased gene expression, except for PYY protein abundance. Inactive B. thetaiotaomicron and B. fragilis increased GCG mRNA levels and GLP-1 concentration, with inactive B. fragilis also elevating GLP-2 protein levels.This study suggests that B. thetaiotaomicron and its derivatives, particularly CFS and OMVs, have potential as next-generation probiotics, postbiotics, and paraprobiotics for modulating satiety hormones and managing obesity. Further research is warranted to explore their mechanisms and therapeutic applications in vivo.

求助全文
约1分钟内获得全文 求助全文
来源期刊
AMB Express
AMB Express BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
2.70%
发文量
141
审稿时长
13 weeks
期刊介绍: AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信