Genomic and morphological features of an Amazonian Bacillus thuringiensis with mosquito larvicidal activity.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Veranilce Alves Muniz, Ricardo de Melo Katak, Lílian Caesar, Juan Campos de Oliveira, Elerson Matos Rocha, Marta Rodrigues de Oliveira, Gilvan Ferreira da Silva, Rosemary Aparecida Roque, Osvaldo Marinotti, Olle Terenius, Edmar Vaz de Andrade
{"title":"Genomic and morphological features of an Amazonian Bacillus thuringiensis with mosquito larvicidal activity.","authors":"Veranilce Alves Muniz, Ricardo de Melo Katak, Lílian Caesar, Juan Campos de Oliveira, Elerson Matos Rocha, Marta Rodrigues de Oliveira, Gilvan Ferreira da Silva, Rosemary Aparecida Roque, Osvaldo Marinotti, Olle Terenius, Edmar Vaz de Andrade","doi":"10.1186/s13568-025-01850-4","DOIUrl":null,"url":null,"abstract":"<p><p>The occurrence of mosquito-borne diseases is increasing, and their geographical range is expanding due to climate change. New control measures are urgently needed to combat these debilitating and, in some cases, fatal diseases. Bacteria of the genus Bacillus are of interest due to the production of bioactive compounds, including those useful for insect control. The discovery and characterization of new species of Bacillus with mosquito larvicidal activity may offer opportunities to develop new products for vector control. In this study, we evaluated larvicidal activity, described morphological characteristics, and sequenced and analyzed the genome of a bacterial strain (GD02.13) isolated from the Amazon region. The metabolites produced by GD02.13 are as effective in killing Aedes aegypti larvae as the commercial product Natular™ DT (Spinosad). Furthermore, the morphological characteristics of the GD02.13 spores and crystal inclusions resemble those previously described for B. thuringiensis. A phylogenetic analysis based on 443 single-copy orthologs indicated that the bacterial strain GD02.13 belongs to the Bacillus thuringiensis species. Its genome, which was assembled and has a size of 6.6 Mb, contains 16 secondary metabolite biosynthetic gene clusters and genes encoding insecticidal proteins, predicted based on sequence similarity. The data obtained in this study support the development of new insecticide products based on the strain GD02.13 of B. thuringiensis.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"39"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01850-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of mosquito-borne diseases is increasing, and their geographical range is expanding due to climate change. New control measures are urgently needed to combat these debilitating and, in some cases, fatal diseases. Bacteria of the genus Bacillus are of interest due to the production of bioactive compounds, including those useful for insect control. The discovery and characterization of new species of Bacillus with mosquito larvicidal activity may offer opportunities to develop new products for vector control. In this study, we evaluated larvicidal activity, described morphological characteristics, and sequenced and analyzed the genome of a bacterial strain (GD02.13) isolated from the Amazon region. The metabolites produced by GD02.13 are as effective in killing Aedes aegypti larvae as the commercial product Natular™ DT (Spinosad). Furthermore, the morphological characteristics of the GD02.13 spores and crystal inclusions resemble those previously described for B. thuringiensis. A phylogenetic analysis based on 443 single-copy orthologs indicated that the bacterial strain GD02.13 belongs to the Bacillus thuringiensis species. Its genome, which was assembled and has a size of 6.6 Mb, contains 16 secondary metabolite biosynthetic gene clusters and genes encoding insecticidal proteins, predicted based on sequence similarity. The data obtained in this study support the development of new insecticide products based on the strain GD02.13 of B. thuringiensis.

具有杀蚊幼虫活性的亚马逊苏云金芽孢杆菌的基因组和形态特征。
由于气候变化,蚊子传播的疾病越来越多,其地理范围也在不断扩大。迫切需要新的控制措施来防治这些使人衰弱的疾病,在某些情况下甚至是致命的疾病。由于芽孢杆菌属细菌能产生生物活性化合物,包括对昆虫控制有用的化合物,因此备受关注。发现并鉴定具有杀灭蚊虫幼虫活性的芽孢杆菌新品种,可为开发用于病媒控制的新产品提供机会。在这项研究中,我们对从亚马逊地区分离出来的一株细菌(GD02.13)进行了杀幼虫剂活性评估、形态特征描述、基因组测序和分析。GD02.13 产生的代谢物在杀灭埃及伊蚊幼虫方面的效果与商业产品 Natular™ DT(Spinosad)不相上下。此外,GD02.13 孢子和晶体内含物的形态特征与之前描述的苏云金芽孢杆菌相似。基于 443 个单拷贝同源物的系统进化分析表明,GD02.13 菌株属于苏云金芽孢杆菌属。其基因组已组装完成,大小为 6.6 Mb,包含 16 个次级代谢物生物合成基因簇和根据序列相似性预测的编码杀虫蛋白的基因。本研究获得的数据支持以苏云金杆菌 GD02.13 菌株为基础开发新的杀虫剂产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AMB Express
AMB Express BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
2.70%
发文量
141
审稿时长
13 weeks
期刊介绍: AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信