Advancing endosomal escape of polymeric nanoparticles: towards improved intracellular delivery.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yufu Wang, Vajini Ukwattage, Yijun Xiong, Georgina K Such
{"title":"Advancing endosomal escape of polymeric nanoparticles: towards improved intracellular delivery.","authors":"Yufu Wang, Vajini Ukwattage, Yijun Xiong, Georgina K Such","doi":"10.1039/d4mh01781a","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric nanoparticles have emerged as a promising platform for the intracellular delivery of therapeutics, offering unique advantages such as tunable chemical properties and stimuli-responsive behavior. However, a significant challenge in their use remains the efficient delivery of therapeutic cargo to the site of action. This typically relies on escape from endosomal/lysosomal compartments where nanoparticles are trapped upon internalisation within a cell, a process termed endosomal escape. Despite considerable research, the mechanisms underlying endosomal escape are still poorly understood, with inconsistent findings across studies. Moreover, there is a notable lack of standardized methods to accurately quantify this escape process. In this review, we explore the current understanding of endosomal escape mechanisms specific to polymeric nanoparticles and explore critical design strategies that have been used. We also highlight recent advancements in methods to quantify endosomal escape, with the aim of promoting broader application of these technologies in understanding the behaviour of polymeric nanoparticles.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01781a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymeric nanoparticles have emerged as a promising platform for the intracellular delivery of therapeutics, offering unique advantages such as tunable chemical properties and stimuli-responsive behavior. However, a significant challenge in their use remains the efficient delivery of therapeutic cargo to the site of action. This typically relies on escape from endosomal/lysosomal compartments where nanoparticles are trapped upon internalisation within a cell, a process termed endosomal escape. Despite considerable research, the mechanisms underlying endosomal escape are still poorly understood, with inconsistent findings across studies. Moreover, there is a notable lack of standardized methods to accurately quantify this escape process. In this review, we explore the current understanding of endosomal escape mechanisms specific to polymeric nanoparticles and explore critical design strategies that have been used. We also highlight recent advancements in methods to quantify endosomal escape, with the aim of promoting broader application of these technologies in understanding the behaviour of polymeric nanoparticles.

推进聚合纳米颗粒的内体逃逸:朝着改善细胞内递送。
聚合物纳米颗粒已成为细胞内递送治疗药物的一个有前途的平台,具有独特的优势,如可调的化学性质和刺激反应行为。然而,它们的使用面临的一个重大挑战仍然是有效地将治疗货物运送到作用部位。这通常依赖于纳米颗粒在细胞内内化时被捕获的内体/溶酶体隔室的逃逸,这一过程称为内体逃逸。尽管进行了大量的研究,但内体逃逸的机制仍然知之甚少,研究结果不一致。此外,明显缺乏标准化的方法来准确量化这一逃逸过程。在这篇综述中,我们探讨了目前对聚合物纳米颗粒特异性内体逃逸机制的理解,并探讨了已使用的关键设计策略。我们还强调了量化内体逃逸方法的最新进展,目的是促进这些技术在理解聚合纳米颗粒行为方面的更广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信