{"title":"Postsynthetic Modification of Metal-Organic Layers.","authors":"Zhiye Wang, Lingyun Cao, Huihui Hu, Cheng Wang","doi":"10.1021/acs.accounts.4c00726","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusMetal-organic layers (MOLs), as a subclass of two-dimensional (2D) metal-organic frameworks (MOFs), have gained prominence in materials science by combining the structural versatility of MOFs with the unique physical and chemical properties of 2D materials. MOLs consist of metal oxide clusters connected by organic ligands, forming periodically extended 2D architectures with tunable properties and large surface areas. These characteristics endow MOLs with significant potential for applications in catalysis, sensing, energy storage, and biomedicine.The synthesis of MOLs predominantly follows two key pathways: top-down exfoliation of bulk layered MOFs and bottom-up assembly from molecular building units. The exfoliation method allows for the isolation of ultrathin MOL sheets from bulk precursors, but scalability and structural defects present ongoing challenges. In contrast, the bottom-up assembly offers more precise control over structural design, enabling the formation of MOLs with tailored chemical functionalities and morphologies. By carefully selecting linkers and synthetic conditions, researchers have successfully constructed MOLs with diverse geometric configurations including linear, triangular, and rectangular ligand motifs. Nevertheless, achieving consistent monolayer formation and controlling lateral dimensions remain critical challenges for the widespread application of these materials.A defining advantage of MOLs is their exceptional amenability to postsynthetic modification (PSM). PSM strategies enable fine-tuning of MOL properties and the introduction of novel functionalities without compromising the integrity of the underlying framework. Four principal approaches to PSM have been established: (1) linker modification, where additional coordination sites facilitate selective metalation or functional group incorporation; (2) secondary building unit (SBU) modification, using replaceable sites perpendicular to the MOL plane for targeted functionalization; (3) dual modification, integrating linker and SBU functionalization to achieve complex multifunctional platforms; and (4) multilevel assembly, incorporating MOLs into larger hierarchical architectures such as biomimetic systems and composite materials.These versatile modification strategies have unlocked novel applications of MOLs, including single-site catalysis, photocatalysis, and artificial photosynthetic systems. For instance, MOLs functionalized with transition metal complexes have more accessible reactive sites than conventional MOFs for faster substrate transport. Additionally, MOLs interfaced with biomimetic systems, such as liposomes and proteins, have demonstrated significant promise in photochemical energy conversion and selective oxidation processes.Despite these advancements, several key obstacles persist. Achieving uniform monolayer thickness while preventing multilayer aggregation remains a formidable task, necessitating deeper insights into the thermodynamic and kinetic factors governing MOL growth. Furthermore, the behavior of MOLs during drying, adsorption, and structural modification often deviates from classical models, suggesting the involvement of complex interfacial phenomena that warrant further investigation. Addressing these challenges will be crucial for harnessing the full potential of MOLs in next-generation functional materials.In summary, MOLs represent a versatile and dynamic class of materials that offer opportunities for innovation across diverse scientific disciplines. By advancing synthetic methodologies and deepening our understanding of postsynthetic modification strategies, researchers can continue to expand the functional landscape of MOLs, paving the way for transformative applications in catalysis, energy conversion, and beyond.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00726","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ConspectusMetal-organic layers (MOLs), as a subclass of two-dimensional (2D) metal-organic frameworks (MOFs), have gained prominence in materials science by combining the structural versatility of MOFs with the unique physical and chemical properties of 2D materials. MOLs consist of metal oxide clusters connected by organic ligands, forming periodically extended 2D architectures with tunable properties and large surface areas. These characteristics endow MOLs with significant potential for applications in catalysis, sensing, energy storage, and biomedicine.The synthesis of MOLs predominantly follows two key pathways: top-down exfoliation of bulk layered MOFs and bottom-up assembly from molecular building units. The exfoliation method allows for the isolation of ultrathin MOL sheets from bulk precursors, but scalability and structural defects present ongoing challenges. In contrast, the bottom-up assembly offers more precise control over structural design, enabling the formation of MOLs with tailored chemical functionalities and morphologies. By carefully selecting linkers and synthetic conditions, researchers have successfully constructed MOLs with diverse geometric configurations including linear, triangular, and rectangular ligand motifs. Nevertheless, achieving consistent monolayer formation and controlling lateral dimensions remain critical challenges for the widespread application of these materials.A defining advantage of MOLs is their exceptional amenability to postsynthetic modification (PSM). PSM strategies enable fine-tuning of MOL properties and the introduction of novel functionalities without compromising the integrity of the underlying framework. Four principal approaches to PSM have been established: (1) linker modification, where additional coordination sites facilitate selective metalation or functional group incorporation; (2) secondary building unit (SBU) modification, using replaceable sites perpendicular to the MOL plane for targeted functionalization; (3) dual modification, integrating linker and SBU functionalization to achieve complex multifunctional platforms; and (4) multilevel assembly, incorporating MOLs into larger hierarchical architectures such as biomimetic systems and composite materials.These versatile modification strategies have unlocked novel applications of MOLs, including single-site catalysis, photocatalysis, and artificial photosynthetic systems. For instance, MOLs functionalized with transition metal complexes have more accessible reactive sites than conventional MOFs for faster substrate transport. Additionally, MOLs interfaced with biomimetic systems, such as liposomes and proteins, have demonstrated significant promise in photochemical energy conversion and selective oxidation processes.Despite these advancements, several key obstacles persist. Achieving uniform monolayer thickness while preventing multilayer aggregation remains a formidable task, necessitating deeper insights into the thermodynamic and kinetic factors governing MOL growth. Furthermore, the behavior of MOLs during drying, adsorption, and structural modification often deviates from classical models, suggesting the involvement of complex interfacial phenomena that warrant further investigation. Addressing these challenges will be crucial for harnessing the full potential of MOLs in next-generation functional materials.In summary, MOLs represent a versatile and dynamic class of materials that offer opportunities for innovation across diverse scientific disciplines. By advancing synthetic methodologies and deepening our understanding of postsynthetic modification strategies, researchers can continue to expand the functional landscape of MOLs, paving the way for transformative applications in catalysis, energy conversion, and beyond.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.