The role of amylin, a gut–brain axis hormone, in metabolic and neurological disorders

IF 2.5 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tahir Muhammad, Stephen F. Pastore, Katrina Good, Wai Haung Yu, John B. Vincent
{"title":"The role of amylin, a gut–brain axis hormone, in metabolic and neurological disorders","authors":"Tahir Muhammad,&nbsp;Stephen F. Pastore,&nbsp;Katrina Good,&nbsp;Wai Haung Yu,&nbsp;John B. Vincent","doi":"10.1096/fba.2024-00151","DOIUrl":null,"url":null,"abstract":"<p>Amylin, also known as islet amyloid polypeptide (IAPP), is a pancreatic β<i>-</i>cell peptide hormone involved in satiation and control food intake. It is also produced in smaller quantities by neurons, the gastrointestinal tract, and spinal ganglia. Numerous studies have revealed that patients with type 2 diabetes mellitus (T2DM) and cognitive deficits exhibit IAPP deposits in the pancreas, brain, and blood vessels. IAPP has also been shown to exert neuroprotective effects against Alzheimer's disease (AD) and cognitive impairments. The objective of this review paper is to provide recent information about the pathophysiological roles of IAPP in metabolic and in neurological disorders, and its potential as a druggable target. We have reviewed preclinical and clinical human and animal research studies of IAPP. We discuss the IAPP structure, its receptors, and its physiological functions in metabolism, satiation, adiposity, obesity, and in the brain. Then we discuss its role in metabolic and neurological disorders like diabetes, obesity, bone disorder, neurodegeneration, cerebrovascular disorders, depression, alcohol use disorder, epilepsy, and in ovarian cysts. Overall, this review provides information on the progress of research into the roles of IAPP and its receptor in food intake, energy homeostasis, glucose regulation, satiation, and its role in metabolic and neurological disorders making it a potential target for therapeutic approaches. This review also suggests that the utilization of rodents overexpressing human IAPP in neurodegeneration models may unearth some significant therapeutic potentials for neurological disorders.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"7 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2024-00151","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fba.2024-00151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amylin, also known as islet amyloid polypeptide (IAPP), is a pancreatic β-cell peptide hormone involved in satiation and control food intake. It is also produced in smaller quantities by neurons, the gastrointestinal tract, and spinal ganglia. Numerous studies have revealed that patients with type 2 diabetes mellitus (T2DM) and cognitive deficits exhibit IAPP deposits in the pancreas, brain, and blood vessels. IAPP has also been shown to exert neuroprotective effects against Alzheimer's disease (AD) and cognitive impairments. The objective of this review paper is to provide recent information about the pathophysiological roles of IAPP in metabolic and in neurological disorders, and its potential as a druggable target. We have reviewed preclinical and clinical human and animal research studies of IAPP. We discuss the IAPP structure, its receptors, and its physiological functions in metabolism, satiation, adiposity, obesity, and in the brain. Then we discuss its role in metabolic and neurological disorders like diabetes, obesity, bone disorder, neurodegeneration, cerebrovascular disorders, depression, alcohol use disorder, epilepsy, and in ovarian cysts. Overall, this review provides information on the progress of research into the roles of IAPP and its receptor in food intake, energy homeostasis, glucose regulation, satiation, and its role in metabolic and neurological disorders making it a potential target for therapeutic approaches. This review also suggests that the utilization of rodents overexpressing human IAPP in neurodegeneration models may unearth some significant therapeutic potentials for neurological disorders.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
FASEB bioAdvances
FASEB bioAdvances Multiple-
CiteScore
5.40
自引率
3.70%
发文量
56
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信