Controlled Synthesis of 2D Nanostructured Bimetallic Oxide (NiMoO4) on Self-Supported Nickel Foam for Boosted Electrocatalytic Seawater Oxidation Performance

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Gopalakrishnan Shanmugam, Harish Santhana Krishnan, Senthil Kumar Eswaran, Navaneethan Mani
{"title":"Controlled Synthesis of 2D Nanostructured Bimetallic Oxide (NiMoO4) on Self-Supported Nickel Foam for Boosted Electrocatalytic Seawater Oxidation Performance","authors":"Gopalakrishnan Shanmugam,&nbsp;Harish Santhana Krishnan,&nbsp;Senthil Kumar Eswaran,&nbsp;Navaneethan Mani","doi":"10.1002/ente.202400941","DOIUrl":null,"url":null,"abstract":"<p>\nThe design and development of effective electrocatalysts containing nonprecious materials for oxygen evolution reaction (OER) in seawater splitting remains a significant challenge for large-scale industrial hydrogen production. Nonprecious bimetallic oxide-constructed catalysts are utmost promising candidates to obtain boosting electrochemical water oxidation performance. Herein, a transition bimetallic oxide nanostructure electrocatalyst as NiMoO<sub>4</sub> vertically standing nanosheet over the nickel foam substrate (NiMoO<sub>4</sub>/NF) for electrochemical water oxidation process in alkaline fresh/simulated seawater conditions is presented. NiMoO<sub>4</sub> nanostructure on NF substrate is successfully obtained using a straightforward hydrothermal reaction route and thermal annealing processes. The surface morphology with elemental characteristics of the resultant NiMoO<sub>4</sub>/NF sample exposes highly homogenous vertical standing nanosheets assembled on the NF surface. The electrochemical water oxidation performance of the as-prepared electrodes demonstrates the function of diverse hydrothermal reaction times (3, 6, and 9 h) in fresh and simulated seawater electrolyte conditions. In alkaline seawater electrolyte conditions, optimal hydrothermal reaction time-assisted NiMoO<sub>4</sub>/NF-6 h electrocatalyst possesses significant OER electrocatalytic actives compared to the other samples. Similarly, NiMoO<sub>4</sub>/NF-6 h catalyst exhibits a small overpotential of 429 mV to achieve a current density of 50 mA cm<sup>−2</sup> with a Tafel slope value of 122 mV dec<sup>−1</sup> for OER process. As a result, the resultant superior electrocatalytic performance of the optimal hydrothermal reaction time-aided electrocatalyst (NiMoO<sub>4</sub>/NF-6 h) is ascribed to highly accessible catalytic active centers and enhanced charge transfer kinetics at the interface for electrochemical reactions. Thus, proposed nanostructure-constructed electrocatalysts could prove to be prospective OER candidates for electrochemical water oxidation.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400941","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The design and development of effective electrocatalysts containing nonprecious materials for oxygen evolution reaction (OER) in seawater splitting remains a significant challenge for large-scale industrial hydrogen production. Nonprecious bimetallic oxide-constructed catalysts are utmost promising candidates to obtain boosting electrochemical water oxidation performance. Herein, a transition bimetallic oxide nanostructure electrocatalyst as NiMoO4 vertically standing nanosheet over the nickel foam substrate (NiMoO4/NF) for electrochemical water oxidation process in alkaline fresh/simulated seawater conditions is presented. NiMoO4 nanostructure on NF substrate is successfully obtained using a straightforward hydrothermal reaction route and thermal annealing processes. The surface morphology with elemental characteristics of the resultant NiMoO4/NF sample exposes highly homogenous vertical standing nanosheets assembled on the NF surface. The electrochemical water oxidation performance of the as-prepared electrodes demonstrates the function of diverse hydrothermal reaction times (3, 6, and 9 h) in fresh and simulated seawater electrolyte conditions. In alkaline seawater electrolyte conditions, optimal hydrothermal reaction time-assisted NiMoO4/NF-6 h electrocatalyst possesses significant OER electrocatalytic actives compared to the other samples. Similarly, NiMoO4/NF-6 h catalyst exhibits a small overpotential of 429 mV to achieve a current density of 50 mA cm−2 with a Tafel slope value of 122 mV dec−1 for OER process. As a result, the resultant superior electrocatalytic performance of the optimal hydrothermal reaction time-aided electrocatalyst (NiMoO4/NF-6 h) is ascribed to highly accessible catalytic active centers and enhanced charge transfer kinetics at the interface for electrochemical reactions. Thus, proposed nanostructure-constructed electrocatalysts could prove to be prospective OER candidates for electrochemical water oxidation.

Abstract Image

基于自支撑泡沫镍的二维纳米结构双金属氧化物(NiMoO4)控制合成提高海水电催化氧化性能
设计和开发用于海水裂解析氧反应(OER)的有效的含非贵重材料电催化剂仍然是大规模工业制氢的重大挑战。非贵金属双金属氧化物催化剂是提高电化学水氧化性能最有希望的候选材料。本文提出了一种过渡双金属氧化物纳米结构电催化剂NiMoO4垂直立在泡沫镍基体上(NiMoO4/NF),用于碱性淡水/模拟海水条件下的电化学水氧化过程。采用简单的水热反应途径和热退火工艺,在NF衬底上成功制备了NiMoO4纳米结构。所得到的NiMoO4/NF样品的表面形貌具有元素特征,暴露出组装在NF表面上的高度均匀的垂直直立纳米片。制备的电极的电化学水氧化性能显示了不同水热反应时间(3、6和9 h)在新鲜和模拟海水电解质条件下的作用。在碱性海水电解质条件下,最佳的水热反应时间辅助NiMoO4/NF-6 h电催化剂与其他样品相比具有显著的OER电催化活性。同样,NiMoO4/NF-6 h催化剂表现出429 mV的小过电位,OER过程的电流密度为50 mA cm−2,Tafel斜率为122 mV dec−1。结果表明,最佳水热反应时间辅助电催化剂(NiMoO4/NF-6 h)具有优异的电催化性能,这主要归因于其催化活性中心的高度可及性和电化学反应界面电荷转移动力学的增强。因此,所提出的纳米结构的电催化剂可能被证明是电化学水氧化的潜在OER候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信