Incorporating the Acclimation of Photosynthesis and Leaf Respiration in the Noah-MP Land Surface Model: Model Development and Evaluation

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Yanghang Ren, Han Wang, Sandy P. Harrison, I. Colin Prentice, Giulia Mengoli, Long Zhao, Peter B. Reich, Kun Yang
{"title":"Incorporating the Acclimation of Photosynthesis and Leaf Respiration in the Noah-MP Land Surface Model: Model Development and Evaluation","authors":"Yanghang Ren,&nbsp;Han Wang,&nbsp;Sandy P. Harrison,&nbsp;I. Colin Prentice,&nbsp;Giulia Mengoli,&nbsp;Long Zhao,&nbsp;Peter B. Reich,&nbsp;Kun Yang","doi":"10.1029/2024MS004599","DOIUrl":null,"url":null,"abstract":"<p>Realistic simulation of leaf photosynthetic and respiratory processes is needed for accurate prediction of the global carbon cycle. These two processes systematically acclimate to long-term environmental changes by adjusting photosynthetic and respiratory traits (e.g., the maximum photosynthetic capacity at 25°C (<i>V</i><sub>cmax,25</sub>) and the leaf respiration rate at 25°C (<i>R</i><sub>25</sub>)) following increasingly well-understood principles. While some land surface models (LSMs) now account for thermal acclimation, they do so by assigning empirical parameterizations for individual plant functional types (PFTs). Here, we have implemented an Eco-Evolutionary Optimality (EEO)-based scheme to represent the universal acclimation of photosynthesis and leaf respiration to multiple environmental effects, and that therefore requires no PFT-specific parameterizations, in a standard version of the widely used LSM, Noah MP. We evaluated model performance with plant trait data from a 5-year experiment and extensive global field measurements, and carbon flux measurements from FLUXNET2015. We show that observed <i>R</i><sub>25</sub> and <i>V</i><sub>cmax,25</sub> vary substantially both temporally and spatially within the same PFT (<i>C.V.</i> &gt;20%). Our EEO-based scheme captures 62% of the temporal and 70% of the spatial variations in <i>V</i><sub>cmax,25</sub> (73% and 54% of the variations in <i>R</i><sub>25</sub>). The standard scheme underestimates gross primary production by 10% versus 2% for the EEO-based scheme and generates a larger spread in <i>r</i> (correlation coefficient) across flux sites (0.79 ± 0.16 vs. 0.84 ± 0.1, mean ± S.D.). The standard scheme greatly overestimates canopy respiration (bias: ∼200% vs. 8% for the EEO scheme), resulting in less CO<sub>2</sub> uptake by terrestrial ecosystems. Our approach thus simulates climate-carbon coupling more realistically, with fewer parameters.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004599","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Realistic simulation of leaf photosynthetic and respiratory processes is needed for accurate prediction of the global carbon cycle. These two processes systematically acclimate to long-term environmental changes by adjusting photosynthetic and respiratory traits (e.g., the maximum photosynthetic capacity at 25°C (Vcmax,25) and the leaf respiration rate at 25°C (R25)) following increasingly well-understood principles. While some land surface models (LSMs) now account for thermal acclimation, they do so by assigning empirical parameterizations for individual plant functional types (PFTs). Here, we have implemented an Eco-Evolutionary Optimality (EEO)-based scheme to represent the universal acclimation of photosynthesis and leaf respiration to multiple environmental effects, and that therefore requires no PFT-specific parameterizations, in a standard version of the widely used LSM, Noah MP. We evaluated model performance with plant trait data from a 5-year experiment and extensive global field measurements, and carbon flux measurements from FLUXNET2015. We show that observed R25 and Vcmax,25 vary substantially both temporally and spatially within the same PFT (C.V. >20%). Our EEO-based scheme captures 62% of the temporal and 70% of the spatial variations in Vcmax,25 (73% and 54% of the variations in R25). The standard scheme underestimates gross primary production by 10% versus 2% for the EEO-based scheme and generates a larger spread in r (correlation coefficient) across flux sites (0.79 ± 0.16 vs. 0.84 ± 0.1, mean ± S.D.). The standard scheme greatly overestimates canopy respiration (bias: ∼200% vs. 8% for the EEO scheme), resulting in less CO2 uptake by terrestrial ecosystems. Our approach thus simulates climate-carbon coupling more realistically, with fewer parameters.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信