Salma Elageed, Abdirahman M. Omar, Emil Jeansson, Ingunn Skjelvan, Knut Barthel, Truls Johannessen
{"title":"Organic Carbon Remineralization and Calcium Carbonate Production Rates in the Red Sea Computed From Oxygen and Alkalinity Utilizations","authors":"Salma Elageed, Abdirahman M. Omar, Emil Jeansson, Ingunn Skjelvan, Knut Barthel, Truls Johannessen","doi":"10.1029/2024JG008357","DOIUrl":null,"url":null,"abstract":"<p>Organic carbon remineralization rate (OCRR) and the calcium carbonate production rate (CCPR) are influential variables on the efficiency of the biological carbon pump (BCP) but are not well understood in Red Sea. We used historical cruise data of carbonate chemistry, oxygen, and transient tracers from five locations along the north–south central axis of the Red Sea to estimate OCRR and CCPR from tracer-based water mean ages (Γ), apparent oxygen utilization (AOU), and alkalinity utilization (AU). This resulted in the first basin-wide and depth-resolving (100–1,000 m) OCRR and CCPR estimates. Spatial distributions for Γ, AOU, and AU were strongly influenced by the large-scale circulation and showed maxima intermediate depths (400–500 m). Conversely, OCRR and CCPR showed no statistically significant latitudinal differences and peaked (6.5 ± 4.3 and 11.9 ± 4.6 mmol C m<sup>−3</sup> yr<sup>−1</sup>, respectively) at 100-m depth, which decreased to nearly constant values (3.8 ± 0.7 and 1.4 ± 0.3 mmol C m<sup>−3</sup> yr<sup>−1</sup>, respectively) at 300 m and deeper. By depth-integrating CCPR, we estimated annual calcium carbonate production (CCP) of (0.8 ± 0.3) × 10<sup>12</sup> mol, or 0.6% of global ocean production, in the Red Sea, which has only 0.12% of the world ocean area. High correlation between AU and Γ indicated in situ alkalinity removal taking place also in subsurface and deep waters, probably due to chemical precipitation, which has been previously reported for the area. CCP-induced AU affects the carbonate chemistry in the Red Sea water column, and we hypothesize that it also impacts that of the Gulf of Aden through the outflowing Red Sea Outflow Water.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008357","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Organic carbon remineralization rate (OCRR) and the calcium carbonate production rate (CCPR) are influential variables on the efficiency of the biological carbon pump (BCP) but are not well understood in Red Sea. We used historical cruise data of carbonate chemistry, oxygen, and transient tracers from five locations along the north–south central axis of the Red Sea to estimate OCRR and CCPR from tracer-based water mean ages (Γ), apparent oxygen utilization (AOU), and alkalinity utilization (AU). This resulted in the first basin-wide and depth-resolving (100–1,000 m) OCRR and CCPR estimates. Spatial distributions for Γ, AOU, and AU were strongly influenced by the large-scale circulation and showed maxima intermediate depths (400–500 m). Conversely, OCRR and CCPR showed no statistically significant latitudinal differences and peaked (6.5 ± 4.3 and 11.9 ± 4.6 mmol C m−3 yr−1, respectively) at 100-m depth, which decreased to nearly constant values (3.8 ± 0.7 and 1.4 ± 0.3 mmol C m−3 yr−1, respectively) at 300 m and deeper. By depth-integrating CCPR, we estimated annual calcium carbonate production (CCP) of (0.8 ± 0.3) × 1012 mol, or 0.6% of global ocean production, in the Red Sea, which has only 0.12% of the world ocean area. High correlation between AU and Γ indicated in situ alkalinity removal taking place also in subsurface and deep waters, probably due to chemical precipitation, which has been previously reported for the area. CCP-induced AU affects the carbonate chemistry in the Red Sea water column, and we hypothesize that it also impacts that of the Gulf of Aden through the outflowing Red Sea Outflow Water.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology