Suppression of Methanogenesis by Microbial Reduction of Iron-Organic Carbon Associations in Fully Thawed Permafrost Soil

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
E. Voggenreiter, L. ThomasArrigo, M. Bottaro, J. Kilian, D. Straub, F. Ring-Hrubesh, C. Bryce, M. Stahl, A. Kappler, P. Joshi
{"title":"Suppression of Methanogenesis by Microbial Reduction of Iron-Organic Carbon Associations in Fully Thawed Permafrost Soil","authors":"E. Voggenreiter,&nbsp;L. ThomasArrigo,&nbsp;M. Bottaro,&nbsp;J. Kilian,&nbsp;D. Straub,&nbsp;F. Ring-Hrubesh,&nbsp;C. Bryce,&nbsp;M. Stahl,&nbsp;A. Kappler,&nbsp;P. Joshi","doi":"10.1029/2024JG008650","DOIUrl":null,"url":null,"abstract":"<p>Global methane (CH<sub>4</sub>) emissions from thawing permafrost peatlands are expected to increase substantially in the future. Net emission of CH<sub>4</sub> depends on the presence of more favorable terminal electron acceptors for microbial respiration, such as ferric iron (Fe(III)). In soils with high OC content, Fe(III) is often coprecipitated with organic carbon (OC). The presence of Fe(III)-OC coprecipitates could either suppress CH<sub>4</sub> emissions due to inhibition of methanogenesis and stimulation of anaerobic methane oxidation coupled to Fe(III) reduction, or enhance emissions by providing additional OC. Here, we investigated the role of Fe(III)-OC coprecipitates in net CH<sub>4</sub> release in a fully thawed, waterlogged permafrost peatland (Stordalen Mire, Abisko, Sweden). We synthesized Fe(III)-OC coprecipitates using natural organic matter from the field site and added them to waterlogged soil in a microcosm experiment and in situ, and followed Fe speciation and changes in greenhouse gas emissions over time. Fe(III)-OC coprecipitates were partially reduced (22%) within 42 days in the microcosm experiment, while almost full reduction (92 ± 4%) occurred in situ within 53 days. This led to a decrease in CH<sub>4</sub> emissions by 94% and 40% in the microcosm and field experiments, respectively, compared to no-coprecipitate controls. A decrease in both RNA-based <i>mcrA</i> copy numbers and relative abundance of detected methanogens indicated that methanogenesis was mainly inhibited by the addition of the coprecipitates due to microbial Fe(III) reduction. In conclusion, Fe(III)-OC coprecipitates temporarily suppress net CH<sub>4</sub> emissions in fully thawed permafrost soils, and might play a similar role in mitigating CH<sub>4</sub> release in other (periodically) flooded soils.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008650","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008650","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Global methane (CH4) emissions from thawing permafrost peatlands are expected to increase substantially in the future. Net emission of CH4 depends on the presence of more favorable terminal electron acceptors for microbial respiration, such as ferric iron (Fe(III)). In soils with high OC content, Fe(III) is often coprecipitated with organic carbon (OC). The presence of Fe(III)-OC coprecipitates could either suppress CH4 emissions due to inhibition of methanogenesis and stimulation of anaerobic methane oxidation coupled to Fe(III) reduction, or enhance emissions by providing additional OC. Here, we investigated the role of Fe(III)-OC coprecipitates in net CH4 release in a fully thawed, waterlogged permafrost peatland (Stordalen Mire, Abisko, Sweden). We synthesized Fe(III)-OC coprecipitates using natural organic matter from the field site and added them to waterlogged soil in a microcosm experiment and in situ, and followed Fe speciation and changes in greenhouse gas emissions over time. Fe(III)-OC coprecipitates were partially reduced (22%) within 42 days in the microcosm experiment, while almost full reduction (92 ± 4%) occurred in situ within 53 days. This led to a decrease in CH4 emissions by 94% and 40% in the microcosm and field experiments, respectively, compared to no-coprecipitate controls. A decrease in both RNA-based mcrA copy numbers and relative abundance of detected methanogens indicated that methanogenesis was mainly inhibited by the addition of the coprecipitates due to microbial Fe(III) reduction. In conclusion, Fe(III)-OC coprecipitates temporarily suppress net CH4 emissions in fully thawed permafrost soils, and might play a similar role in mitigating CH4 release in other (periodically) flooded soils.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信