Do Melanocytes Have a Role in Controlling Epidermal Bacterial Colonisation and the Skin Microbiome?

IF 3.5 3区 医学 Q1 DERMATOLOGY
Omera Bi, David Caballero-Lima, Stephen Sikkink, Gill Westgate, Sobia Kauser, Jacobo Elies, M. Julie Thornton
{"title":"Do Melanocytes Have a Role in Controlling Epidermal Bacterial Colonisation and the Skin Microbiome?","authors":"Omera Bi,&nbsp;David Caballero-Lima,&nbsp;Stephen Sikkink,&nbsp;Gill Westgate,&nbsp;Sobia Kauser,&nbsp;Jacobo Elies,&nbsp;M. Julie Thornton","doi":"10.1111/exd.70071","DOIUrl":null,"url":null,"abstract":"<p>In addition to producing melanin to protect epidermal keratinocytes against DNA damage, melanocytes may have important roles in strengthening innate immunity against pathogens. We have developed a functional, pigmented, human full-thickness 3D skin equivalent to determine whether the presence of melanocytes impacts epidermal bacterial growth and regulates the expression of genes involved in the immune response. We introduced primary epidermal melanocytes to construct a 3-cell full-thickness skin equivalent with primary dermal fibroblasts and epidermal keratinocytes. Immunohistochemistry verified the appropriate ratio and spatial organisation of melanocytes. Alpha-MSH induced melanogenesis, confirming an appropriate physiological response. We compared this 3-cell skin equivalent with the 2-cell version without melanocytes in response to inoculation with 3 species of bacteria: <i>Staphylococcus epidermidis, Corynebacterium striatum</i>, and <i>Cutibacterium acnes.</i> There was a significant decrease in the colonisation of bacteria in the skin equivalents containing functional melanocytes. There was increased expression of immune-response genes (<i>S100A9, DEFB4A, IL-4R</i>) following microorganism exposure; however, there were marked differences between the unpigmented and pigmented skin equivalents. This physiologically relevant human 3D-skin equivalent opens up new avenues for studying complex skin pigmentation disorders, melanoma, and UV damage, as well as the rapidly evolving field of the skin microbiome and the balance between commensal and pathogenic species.</p>","PeriodicalId":12243,"journal":{"name":"Experimental Dermatology","volume":"34 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exd.70071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Dermatology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exd.70071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to producing melanin to protect epidermal keratinocytes against DNA damage, melanocytes may have important roles in strengthening innate immunity against pathogens. We have developed a functional, pigmented, human full-thickness 3D skin equivalent to determine whether the presence of melanocytes impacts epidermal bacterial growth and regulates the expression of genes involved in the immune response. We introduced primary epidermal melanocytes to construct a 3-cell full-thickness skin equivalent with primary dermal fibroblasts and epidermal keratinocytes. Immunohistochemistry verified the appropriate ratio and spatial organisation of melanocytes. Alpha-MSH induced melanogenesis, confirming an appropriate physiological response. We compared this 3-cell skin equivalent with the 2-cell version without melanocytes in response to inoculation with 3 species of bacteria: Staphylococcus epidermidis, Corynebacterium striatum, and Cutibacterium acnes. There was a significant decrease in the colonisation of bacteria in the skin equivalents containing functional melanocytes. There was increased expression of immune-response genes (S100A9, DEFB4A, IL-4R) following microorganism exposure; however, there were marked differences between the unpigmented and pigmented skin equivalents. This physiologically relevant human 3D-skin equivalent opens up new avenues for studying complex skin pigmentation disorders, melanoma, and UV damage, as well as the rapidly evolving field of the skin microbiome and the balance between commensal and pathogenic species.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Dermatology
Experimental Dermatology 医学-皮肤病学
CiteScore
6.70
自引率
5.60%
发文量
201
审稿时长
2 months
期刊介绍: Experimental Dermatology provides a vehicle for the rapid publication of innovative and definitive reports, letters to the editor and review articles covering all aspects of experimental dermatology. Preference is given to papers of immediate importance to other investigators, either by virtue of their new methodology, experimental data or new ideas. The essential criteria for publication are clarity, experimental soundness and novelty. Letters to the editor related to published reports may also be accepted, provided that they are short and scientifically relevant to the reports mentioned, in order to provide a continuing forum for discussion. Review articles represent a state-of-the-art overview and are invited by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信