Optimized nitrogen application rate based on soil residual nitrogen significantly increased the yield and biological nitrogen fixation of fresh faba bean as vegetables

IF 2 3区 农林科学 Q2 AGRONOMY
Crop Science Pub Date : 2025-03-06 DOI:10.1002/csc2.70013
Yi Pu, Kuai Dai, Jiangzhou Li, Yan Wang, Shan Lin, Meiju Liu
{"title":"Optimized nitrogen application rate based on soil residual nitrogen significantly increased the yield and biological nitrogen fixation of fresh faba bean as vegetables","authors":"Yi Pu,&nbsp;Kuai Dai,&nbsp;Jiangzhou Li,&nbsp;Yan Wang,&nbsp;Shan Lin,&nbsp;Meiju Liu","doi":"10.1002/csc2.70013","DOIUrl":null,"url":null,"abstract":"<p>Optimizing nitrogen (N) application rate during faba bean (<i>Vicia faba</i> (L.) Linné) growth season might increase biological N fixation (BNF) and decrease soil residual N which will be benefit to the growth of following N sensitive crops. A 4-year field study was conducted with six N rates (0, 45, 90, 135, 180, and 225 kg N ha<sup>−1</sup>). Yield, agronomic traits, root and nodule characteristics, N uptake, and biological N fixation were measured. Our results showed that (1) pod and grain yield, nodule weight and count, and BNF of faba bean initially increased with N rates, peaking at 90 kg N ha<sup>−1</sup>, and then declined. (2) BNF measured by <sup>15</sup>N natural abundance strongly correlated with <sup>15</sup>N isotope dilution method. The maximum BNF of 61 kg N ha<sup>−1</sup> occurred at the N rate of 90 kg N ha<sup>−1</sup>, which was significantly greater than that at the other N rates. (3) Root nodule dry weight and count were positively correlated with BNF, as were shoot dry weight and pod yield. (4) The N equation, which is based on the sum of N rate plus soil residual N before sowing, revealed that the pod yield and BNF peak when the total N is &lt;200 kg N ha<sup>−1</sup>. In conclusion, to improve the yield and quality of the next N-sensitive crops and reduce environmental pollution risk, N rate for faba bean should be significantly reduced and adjusted on the basis of soil residual N before sowing. This maximizes the BNF potential of faba bean.</p>","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"65 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/csc2.70013","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing nitrogen (N) application rate during faba bean (Vicia faba (L.) Linné) growth season might increase biological N fixation (BNF) and decrease soil residual N which will be benefit to the growth of following N sensitive crops. A 4-year field study was conducted with six N rates (0, 45, 90, 135, 180, and 225 kg N ha−1). Yield, agronomic traits, root and nodule characteristics, N uptake, and biological N fixation were measured. Our results showed that (1) pod and grain yield, nodule weight and count, and BNF of faba bean initially increased with N rates, peaking at 90 kg N ha−1, and then declined. (2) BNF measured by 15N natural abundance strongly correlated with 15N isotope dilution method. The maximum BNF of 61 kg N ha−1 occurred at the N rate of 90 kg N ha−1, which was significantly greater than that at the other N rates. (3) Root nodule dry weight and count were positively correlated with BNF, as were shoot dry weight and pod yield. (4) The N equation, which is based on the sum of N rate plus soil residual N before sowing, revealed that the pod yield and BNF peak when the total N is <200 kg N ha−1. In conclusion, to improve the yield and quality of the next N-sensitive crops and reduce environmental pollution risk, N rate for faba bean should be significantly reduced and adjusted on the basis of soil residual N before sowing. This maximizes the BNF potential of faba bean.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Crop Science
Crop Science 农林科学-农艺学
CiteScore
4.50
自引率
8.70%
发文量
197
审稿时长
3 months
期刊介绍: Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信