Dongqiong Xiao, Deshuang Zhang, Yi Qu, Xiaojuan Su
{"title":"Methyltransferase-Like 3-Mediated N6-Methyladenosine Modification on RNAs: A Novel Perspective for the Pathogenesis and Treatment of Bone Diseases","authors":"Dongqiong Xiao, Deshuang Zhang, Yi Qu, Xiaojuan Su","doi":"10.1111/jcmm.70483","DOIUrl":null,"url":null,"abstract":"<p>Osteoarthritis, osteoporosis, and osteosarcoma are prevalent osseous pathologies associated with the aberrant functionality of chondrocytes, osteoclasts, and osteoblasts, respectively. These conditions frequently exhibit therapeutic resistance and possess a high mortality risk, thus representing substantial health threats. To mitigate these concerns, it is imperative to investigate novel mechanistic insights. Methyltransferase-like 3 (METTL3) is pivotal in these disorders by modulating gene expression via N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modifications on RNA, thereby impacting cellular processes. Although considerable research has elucidated METTL3's involvement in these diseases, a systematic review is essential to summarise these findings and evaluate METTL3's significance. This review endeavours to aggregate and examine contemporary studies to elucidate METTL3's role in bone pathologies and its clinical implications. We propose that METTL3 constitutes a risk gene in these conditions by mediating m<sup>6</sup>A modifications on both mRNAs and non-coding RNAs, suggesting that METTL3 may serve as a critical diagnostic biomarker and therapeutic target. In conclusion, this review provides an extensive analysis of METTL3 and its correlation with osteoarthritis, osteoporosis, and osteosarcoma, offering valuable perspectives on extant research and serving as a valuable reference for researchers engaged in both basic and translational studies.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70483","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis, osteoporosis, and osteosarcoma are prevalent osseous pathologies associated with the aberrant functionality of chondrocytes, osteoclasts, and osteoblasts, respectively. These conditions frequently exhibit therapeutic resistance and possess a high mortality risk, thus representing substantial health threats. To mitigate these concerns, it is imperative to investigate novel mechanistic insights. Methyltransferase-like 3 (METTL3) is pivotal in these disorders by modulating gene expression via N6-methyladenosine (m6A) modifications on RNA, thereby impacting cellular processes. Although considerable research has elucidated METTL3's involvement in these diseases, a systematic review is essential to summarise these findings and evaluate METTL3's significance. This review endeavours to aggregate and examine contemporary studies to elucidate METTL3's role in bone pathologies and its clinical implications. We propose that METTL3 constitutes a risk gene in these conditions by mediating m6A modifications on both mRNAs and non-coding RNAs, suggesting that METTL3 may serve as a critical diagnostic biomarker and therapeutic target. In conclusion, this review provides an extensive analysis of METTL3 and its correlation with osteoarthritis, osteoporosis, and osteosarcoma, offering valuable perspectives on extant research and serving as a valuable reference for researchers engaged in both basic and translational studies.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.