Bounds on Fourier coefficients and global sup-norms for Siegel cusp forms of degree 2

IF 1 2区 数学 Q1 MATHEMATICS
Félicien Comtat, Jolanta Marzec-Ballesteros, Abhishek Saha
{"title":"Bounds on Fourier coefficients and global sup-norms for Siegel cusp forms of degree 2","authors":"Félicien Comtat,&nbsp;Jolanta Marzec-Ballesteros,&nbsp;Abhishek Saha","doi":"10.1112/jlms.70119","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> be an <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-normalized Siegel cusp form for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Sp</mi>\n <mn>4</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\rm Sp}_4({\\mathbb {Z}})$</annotation>\n </semantics></math> of weight <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> that is a Hecke eigenform and not a Saito–Kurokawa lift. Assuming the generalized Riemann hypothesis, we prove that its Fourier coefficients satisfy the bound <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>a</mi>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>,</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n </mrow>\n <msub>\n <mo>≪</mo>\n <mi>ε</mi>\n </msub>\n <mfrac>\n <mrow>\n <msup>\n <mi>k</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>4</mn>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>4</mn>\n <mi>π</mi>\n <mo>)</mo>\n </mrow>\n <mi>k</mi>\n </msup>\n </mrow>\n <mrow>\n <mi>Γ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mfrac>\n <mi>c</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n </msup>\n <mo>det</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$|a(F,S)| \\ll _\\epsilon \\frac{k^{1/4+\\epsilon } (4\\pi)^k}{\\Gamma (k)} c(S)^{-\\frac{1}{2}} \\det (S)^{\\frac{k-1}{2}+\\epsilon }$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$c(S)$</annotation>\n </semantics></math> denotes the gcd of the entries of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, and that its global sup-norm satisfies the bound <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>∥</mo>\n <mrow>\n <mo>(</mo>\n <mo>det</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mfrac>\n <mi>k</mi>\n <mn>2</mn>\n </mfrac>\n </msup>\n <msub>\n <mrow>\n <mi>F</mi>\n <mo>∥</mo>\n </mrow>\n <mi>∞</mi>\n </msub>\n <msub>\n <mo>≪</mo>\n <mi>ε</mi>\n </msub>\n <msup>\n <mi>k</mi>\n <mrow>\n <mfrac>\n <mn>5</mn>\n <mn>4</mn>\n </mfrac>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Vert (\\det Y)^{\\frac{k}{2}}F\\Vert _\\infty \\ll _\\epsilon k^{\\frac{5}{4}+\\epsilon }$</annotation>\n </semantics></math>. The former result depends on new bounds that we establish for the relevant local integrals appearing in the refined global Gan–Gross–Prasad conjecture (which is now a theorem due to Furusawa and Morimoto) for Bessel periods.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70119","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F $F$ be an L 2 $L^2$ -normalized Siegel cusp form for Sp 4 ( Z ) ${\rm Sp}_4({\mathbb {Z}})$ of weight k $k$ that is a Hecke eigenform and not a Saito–Kurokawa lift. Assuming the generalized Riemann hypothesis, we prove that its Fourier coefficients satisfy the bound | a ( F , S ) | ε k 1 / 4 + ε ( 4 π ) k Γ ( k ) c ( S ) 1 2 det ( S ) k 1 2 + ε $|a(F,S)| \ll _\epsilon \frac{k^{1/4+\epsilon } (4\pi)^k}{\Gamma (k)} c(S)^{-\frac{1}{2}} \det (S)^{\frac{k-1}{2}+\epsilon }$ where c ( S ) $c(S)$ denotes the gcd of the entries of S $S$ , and that its global sup-norm satisfies the bound ( det Y ) k 2 F ε k 5 4 + ε $\Vert (\det Y)^{\frac{k}{2}}F\Vert _\infty \ll _\epsilon k^{\frac{5}{4}+\epsilon }$ . The former result depends on new bounds that we establish for the relevant local integrals appearing in the refined global Gan–Gross–Prasad conjecture (which is now a theorem due to Furusawa and Morimoto) for Bessel periods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信