Denoising Improves Cross-Scanner and Cross-Protocol Test–Retest Reproducibility of Diffusion Tensor and Kurtosis Imaging

IF 3.5 2区 医学 Q1 NEUROIMAGING
Benjamin Ades-Aron, Santiago Coelho, Gregory Lemberskiy, Jelle Veraart, Steven H. Baete, Timothy M. Shepherd, Dmitry S. Novikov, Els Fieremans
{"title":"Denoising Improves Cross-Scanner and Cross-Protocol Test–Retest Reproducibility of Diffusion Tensor and Kurtosis Imaging","authors":"Benjamin Ades-Aron,&nbsp;Santiago Coelho,&nbsp;Gregory Lemberskiy,&nbsp;Jelle Veraart,&nbsp;Steven H. Baete,&nbsp;Timothy M. Shepherd,&nbsp;Dmitry S. Novikov,&nbsp;Els Fieremans","doi":"10.1002/hbm.70142","DOIUrl":null,"url":null,"abstract":"<p>The clinical translation of diffusion magnetic resonance imaging (dMRI)-derived quantitative contrasts hinges on robust reproducibility, minimizing both same-scanner and cross-scanner variability. As multi-site data sets, including multi-shell dMRI, expand in scope, enhancing reproducibility across variable MRI systems and MRI protocols becomes crucial. This study evaluates the reproducibility of diffusion kurtosis imaging (DKI) metrics (beyond conventional diffusion tensor imaging (DTI)), at the voxel and region-of-interest (ROI) levels on magnitude and complex-valued dMRI data, using denoising with and without harmonization. We compared same-scanner, cross-scanner, and cross-protocol variability for a multi-shell dMRI protocol (2-mm isotropic resolution, <i>b</i> = 0, 1000, 2000 s/mm<sup>2</sup>) in 20 subjects. We first evaluated the effectiveness of Marchenko-Pastur Principal Component Analysis (MPPCA) based denoising strategies for both magnitude and complex data to mitigate noise-induced bias and variance, to improve dMRI parametric maps and reproducibility. Next, we examined the impact of denoising under different population analysis approaches, specifically comparing voxel-wise versus region of interest (ROI)-based methods. We also evaluated the role of denoising when harmonizing dMRI across scanners and protocols. The results indicate that DTI and DKI maps visually improve after MPPCA denoising, with noticeably fewer outliers in kurtosis maps. Denoising, either using magnitude or complex dMRI, enhances voxel-wise reproducibility, with test–retest variability of kurtosis indices reduced from 15%–20% without denoising to 5%–10% after denoising. Complex dMRI denoising reduces the noise floor by up to 60%. Denoising not only reduced variability across scans and protocols, but also increased statistical power for low SNR voxel-wise comparisons when comparing cross sectional groups. In conclusion, MPPCA denoising, either over magnitude or complex dMRI data, enhances the reproducibility and precision of higher-order diffusion metrics across same-scanner, cross-scanner, and cross-protocol assessments. The enhancement in data quality and precision facilitates the broader application and acceptance of these advanced imaging techniques in both clinical practice and large-scale neuroimaging studies.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70142","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70142","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The clinical translation of diffusion magnetic resonance imaging (dMRI)-derived quantitative contrasts hinges on robust reproducibility, minimizing both same-scanner and cross-scanner variability. As multi-site data sets, including multi-shell dMRI, expand in scope, enhancing reproducibility across variable MRI systems and MRI protocols becomes crucial. This study evaluates the reproducibility of diffusion kurtosis imaging (DKI) metrics (beyond conventional diffusion tensor imaging (DTI)), at the voxel and region-of-interest (ROI) levels on magnitude and complex-valued dMRI data, using denoising with and without harmonization. We compared same-scanner, cross-scanner, and cross-protocol variability for a multi-shell dMRI protocol (2-mm isotropic resolution, b = 0, 1000, 2000 s/mm2) in 20 subjects. We first evaluated the effectiveness of Marchenko-Pastur Principal Component Analysis (MPPCA) based denoising strategies for both magnitude and complex data to mitigate noise-induced bias and variance, to improve dMRI parametric maps and reproducibility. Next, we examined the impact of denoising under different population analysis approaches, specifically comparing voxel-wise versus region of interest (ROI)-based methods. We also evaluated the role of denoising when harmonizing dMRI across scanners and protocols. The results indicate that DTI and DKI maps visually improve after MPPCA denoising, with noticeably fewer outliers in kurtosis maps. Denoising, either using magnitude or complex dMRI, enhances voxel-wise reproducibility, with test–retest variability of kurtosis indices reduced from 15%–20% without denoising to 5%–10% after denoising. Complex dMRI denoising reduces the noise floor by up to 60%. Denoising not only reduced variability across scans and protocols, but also increased statistical power for low SNR voxel-wise comparisons when comparing cross sectional groups. In conclusion, MPPCA denoising, either over magnitude or complex dMRI data, enhances the reproducibility and precision of higher-order diffusion metrics across same-scanner, cross-scanner, and cross-protocol assessments. The enhancement in data quality and precision facilitates the broader application and acceptance of these advanced imaging techniques in both clinical practice and large-scale neuroimaging studies.

Abstract Image

去噪提高了扩散张量和峰度成像的跨扫描和跨协议测试-重测试再现性
扩散磁共振成像(dMRI)衍生的定量对比的临床翻译取决于强大的可重复性,最大限度地减少同扫描仪和跨扫描仪的可变性。随着多位点数据集(包括多壳体dMRI)的范围扩大,提高不同MRI系统和MRI协议的可重复性变得至关重要。本研究评估了扩散峰度成像(DKI)指标(超越传统的扩散张量成像(DTI))在体素和感兴趣区域(ROI)水平上对大小和复杂值dMRI数据的可重复性,使用调和和不调和去噪。我们比较了20名受试者的多壳dMRI协议(2毫米各向同性分辨率,b = 0,1000,2000 s/mm2)的同一扫描仪,交叉扫描仪和跨协议变异性。我们首先评估了基于Marchenko-Pastur主成分分析(MPPCA)的去噪策略对大小和复杂数据的有效性,以减轻噪声引起的偏差和方差,改善dMRI参数图和可重复性。接下来,我们研究了不同种群分析方法下去噪的影响,特别是比较了基于体素的方法和基于感兴趣区域(ROI)的方法。我们还评估了在协调跨扫描仪和协议的dMRI时去噪的作用。结果表明,经过MPPCA去噪后,DTI和DKI图在视觉上得到了改善,峰度图中的异常值明显减少。去噪,无论是使用幅度还是复杂的dMRI,都可以增强体素方面的再现性,峰度指数的重测变异性从未去噪的15%-20%降低到去噪后的5%-10%。复杂的dMRI去噪可将本底噪声降低高达60%。去噪不仅减少了扫描和协议之间的可变性,而且在比较横截面组时,还增加了低信噪比体素比较的统计能力。总之,MPPCA去噪,无论是大数据还是复杂的dMRI数据,都可以提高同一扫描仪、跨扫描仪和跨协议评估的高阶扩散指标的再现性和精度。数据质量和精度的提高促进了这些先进成像技术在临床实践和大规模神经影像学研究中的广泛应用和接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信