Attention Driven–Chained Transfer Learning for Generalized Sequential State of Charge Forecasting in Vanadium Redox Flow Batteries

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Shahzeb Tariq, Usama Ali, Seshagiri Rao Ambati, ChangKyoo Yoo
{"title":"Attention Driven–Chained Transfer Learning for Generalized Sequential State of Charge Forecasting in Vanadium Redox Flow Batteries","authors":"Shahzeb Tariq,&nbsp;Usama Ali,&nbsp;Seshagiri Rao Ambati,&nbsp;ChangKyoo Yoo","doi":"10.1155/er/9925384","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The increasing integration of renewable energy sources into power grids necessitates efficient energy storage systems to balance supply and demand. Vanadium redox flow batteries (VRFBs) are becoming increasingly popular because of their long lifespan and flexible energy storage capabilities. Central to the effectiveness of VRFBs is the accurate estimation of future state of charge (SOC) levels. However, conventional SOC forecast frameworks suffer from poor generalization capabilities, which restrict their applicability in real-life energy systems. This research introduces a sequential forecast framework that combines multihead self-attention (MHA) with chained transfer learning (CTL) to estimate SOC sequences across multiple temporal horizons. The model performance is evaluated by forecasting SOC levels of the VRFB system operated under various charging and discharging current profiles. The results demonstrate that the change in the VRFB system’s operational dynamics significantly reduces the forecast accuracy of conventional frameworks, with the maximum MAE reaching 66%. Compared to the best-performing baseline trained on a linear current profile, the CTL-MHA-gated recurrent unit (GRU) decreased the maximum MAE from 28.7% to below 1.5%. The generalization capability of the proposed framework addresses a critical barrier to the integration of SOC forecast frameworks with smart energy storage systems.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/9925384","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/9925384","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing integration of renewable energy sources into power grids necessitates efficient energy storage systems to balance supply and demand. Vanadium redox flow batteries (VRFBs) are becoming increasingly popular because of their long lifespan and flexible energy storage capabilities. Central to the effectiveness of VRFBs is the accurate estimation of future state of charge (SOC) levels. However, conventional SOC forecast frameworks suffer from poor generalization capabilities, which restrict their applicability in real-life energy systems. This research introduces a sequential forecast framework that combines multihead self-attention (MHA) with chained transfer learning (CTL) to estimate SOC sequences across multiple temporal horizons. The model performance is evaluated by forecasting SOC levels of the VRFB system operated under various charging and discharging current profiles. The results demonstrate that the change in the VRFB system’s operational dynamics significantly reduces the forecast accuracy of conventional frameworks, with the maximum MAE reaching 66%. Compared to the best-performing baseline trained on a linear current profile, the CTL-MHA-gated recurrent unit (GRU) decreased the maximum MAE from 28.7% to below 1.5%. The generalization capability of the proposed framework addresses a critical barrier to the integration of SOC forecast frameworks with smart energy storage systems.

Abstract Image

基于注意力驱动链式迁移学习的钒液流电池广义序贯充电状态预测
随着可再生能源越来越多地并入电网,需要高效的储能系统来平衡供需。钒氧化还原液流电池(vrfb)因其长寿命和灵活的储能能力而越来越受欢迎。vrfb有效性的核心是对未来充电状态(SOC)水平的准确估计。然而,传统的SOC预测框架泛化能力较差,限制了其在实际能源系统中的适用性。本研究引入了一个结合多头自注意(MHA)和链式迁移学习(CTL)的序列预测框架,以估计跨多个时间视界的SOC序列。通过预测VRFB系统在不同充放电电流下的荷电状态来评估模型的性能。结果表明,VRFB系统运行动态的变化显著降低了传统框架的预测精度,最大MAE达到66%。与在线性电流剖面上训练的最佳基线相比,ctl - mha门控循环单元(GRU)将最大MAE从28.7%降低到1.5%以下。该框架的泛化能力解决了SOC预测框架与智能储能系统集成的关键障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信