Development and Validation of Explainable Artificial Intelligence System for Automatic Diagnosis of Cervical Lymphadenopathy From Ultrasound Images

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ming Xu, Yubiao Yue, Zhenzhang Li, Yinhong Li, Guoying Li, Haihua Liang, Di Liu, Xiaohong Xu
{"title":"Development and Validation of Explainable Artificial Intelligence System for Automatic Diagnosis of Cervical Lymphadenopathy From Ultrasound Images","authors":"Ming Xu,&nbsp;Yubiao Yue,&nbsp;Zhenzhang Li,&nbsp;Yinhong Li,&nbsp;Guoying Li,&nbsp;Haihua Liang,&nbsp;Di Liu,&nbsp;Xiaohong Xu","doi":"10.1155/int/5432766","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Clinical diagnosis of cervical lymphadenopathy (CLA) using ultrasound images is a time-consuming and laborious process that heavily relies on expert experience. This study aimed to develop an intelligent computer-aided diagnosis (CAD) system using deep learning models (DLMs) to enhance the efficiency of ultrasound screening and diagnostic accuracy of CLA. We retrospectively collected 4089 ultrasound images of cervical lymph nodes across four categories from two hospitals: normal, benign CLA, primary malignant CLA, and metastatic malignant CLA. We employed transfer learning, data augmentation, and five-fold cross-validation to evaluate the diagnostic performance of DLMs with different architectures. To boost the application potential of DLMs, we investigated the potential impact of various optimizers and machine learning classifiers on their diagnostic performance. Our findings revealed that EfficientNet-B1 with transfer learning and root-mean-square-propagation optimizer achieved state-of-the-art performance, with overall accuracies of 97.0% and 90.8% on the internal and external test sets, respectively. Additionally, human–machine comparison experiments and the implementation of explainable artificial intelligence technology further enhance the reliability and safety of DLMs and help clinicians easily understand the DLM results. Finally, we developed an application that can be implemented in systems running Microsoft Windows. However, additional prospective studies are required to validate the clinical utility of the developed application. All pretrained DLMs, codes, and application are available at https://github.com/YubiaoYue/DeepUS-CLN.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/5432766","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/5432766","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical diagnosis of cervical lymphadenopathy (CLA) using ultrasound images is a time-consuming and laborious process that heavily relies on expert experience. This study aimed to develop an intelligent computer-aided diagnosis (CAD) system using deep learning models (DLMs) to enhance the efficiency of ultrasound screening and diagnostic accuracy of CLA. We retrospectively collected 4089 ultrasound images of cervical lymph nodes across four categories from two hospitals: normal, benign CLA, primary malignant CLA, and metastatic malignant CLA. We employed transfer learning, data augmentation, and five-fold cross-validation to evaluate the diagnostic performance of DLMs with different architectures. To boost the application potential of DLMs, we investigated the potential impact of various optimizers and machine learning classifiers on their diagnostic performance. Our findings revealed that EfficientNet-B1 with transfer learning and root-mean-square-propagation optimizer achieved state-of-the-art performance, with overall accuracies of 97.0% and 90.8% on the internal and external test sets, respectively. Additionally, human–machine comparison experiments and the implementation of explainable artificial intelligence technology further enhance the reliability and safety of DLMs and help clinicians easily understand the DLM results. Finally, we developed an application that can be implemented in systems running Microsoft Windows. However, additional prospective studies are required to validate the clinical utility of the developed application. All pretrained DLMs, codes, and application are available at https://github.com/YubiaoYue/DeepUS-CLN.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信