Improving Neural Machine Translation Through Code-Mixed Data Augmentation

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ramakrishna Appicharla, Kamal Kumar Gupta, Asif Ekbal, Pushpak Bhattacharyya
{"title":"Improving Neural Machine Translation Through Code-Mixed Data Augmentation","authors":"Ramakrishna Appicharla,&nbsp;Kamal Kumar Gupta,&nbsp;Asif Ekbal,&nbsp;Pushpak Bhattacharyya","doi":"10.1111/coin.70033","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper studies neural machine translation (NMT) of code-mixed (CM) text. Specifically, we generate synthetic CM data and how it can be used to improve the translation performance of NMT through the data augmentation strategy. We conduct experiments on three data augmentation approaches viz. CM-Augmentation, CM-Concatenation, and Multi-Encoder approaches, and the latter two approaches are inspired by document-level NMT, where we use synthetic CM data as context to improve the performance of the NMT models. We conduct experiments on three language pairs, viz. Hindi–English, Telugu–English and Czech–English. Experimental results demonstrate that the proposed approaches significantly improve performance over the baseline model trained without data augmentation and over the existing data augmentation strategies. The CM-Concatenation model attains the best performance.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70033","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies neural machine translation (NMT) of code-mixed (CM) text. Specifically, we generate synthetic CM data and how it can be used to improve the translation performance of NMT through the data augmentation strategy. We conduct experiments on three data augmentation approaches viz. CM-Augmentation, CM-Concatenation, and Multi-Encoder approaches, and the latter two approaches are inspired by document-level NMT, where we use synthetic CM data as context to improve the performance of the NMT models. We conduct experiments on three language pairs, viz. Hindi–English, Telugu–English and Czech–English. Experimental results demonstrate that the proposed approaches significantly improve performance over the baseline model trained without data augmentation and over the existing data augmentation strategies. The CM-Concatenation model attains the best performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信