Shuang Liu, Chaofeng Wang, Yi Guo, Jiajia Huang, Xiaohui Liu, Jing Zhang, Yuejin Zhu, Like Huang
{"title":"Compact Layer-Free Perovskite Solar Cells with Low-Temperature UVO Photochemical Annealed Mesoporous TiO2 Layers","authors":"Shuang Liu, Chaofeng Wang, Yi Guo, Jiajia Huang, Xiaohui Liu, Jing Zhang, Yuejin Zhu, Like Huang","doi":"10.1002/ente.202401503","DOIUrl":null,"url":null,"abstract":"<p>\nIn recent years, the field of perovskite solar cells (PSCs) has seen rapid development, with most high-efficiency devices incorporating dense titanium dioxide (TiO<sub>2</sub>) barrier layers and mesoporous TiO<sub>2</sub> layers to enhance selective electron transport. However, the manufacturing process requires high-temperature sintering steps above 450 °C, leading to significant energy consumption. In addition, this requirement greatly limits the potential applications of PSCs in the field of flexible electronics. This study introduces a new method for preparing dense-layer-free mesoporous PSCs using low-temperature UVO annealing of m-TiO<sub>2</sub>. UVO annealing effectively removes residual organic components from m-TiO<sub>2</sub> precursor films, enhances the conductivity and wettability of the films, thereby reducing carrier recombination and improving the performance of PSCs. Research has shown that PSC with a 40 min UVO annealed m-TiO<sub>2</sub> layer exhibits a final photoelectric conversion efficiency of 17.79%, comparable to devices with traditional high-temperature annealed m-TiO<sub>2</sub> PSCs. In addition, after 7 days at room temperature and ambient humidity, the unpackaged device maintains a maximum conversion efficiency of 84%. These findings indicate that UVO light annealing is a feasible alternative to high-temperature annealing, providing a simpler, more cost-effective, and energy-saving method for the preparation of metal oxide electron transport layer in PSCs.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401503","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the field of perovskite solar cells (PSCs) has seen rapid development, with most high-efficiency devices incorporating dense titanium dioxide (TiO2) barrier layers and mesoporous TiO2 layers to enhance selective electron transport. However, the manufacturing process requires high-temperature sintering steps above 450 °C, leading to significant energy consumption. In addition, this requirement greatly limits the potential applications of PSCs in the field of flexible electronics. This study introduces a new method for preparing dense-layer-free mesoporous PSCs using low-temperature UVO annealing of m-TiO2. UVO annealing effectively removes residual organic components from m-TiO2 precursor films, enhances the conductivity and wettability of the films, thereby reducing carrier recombination and improving the performance of PSCs. Research has shown that PSC with a 40 min UVO annealed m-TiO2 layer exhibits a final photoelectric conversion efficiency of 17.79%, comparable to devices with traditional high-temperature annealed m-TiO2 PSCs. In addition, after 7 days at room temperature and ambient humidity, the unpackaged device maintains a maximum conversion efficiency of 84%. These findings indicate that UVO light annealing is a feasible alternative to high-temperature annealing, providing a simpler, more cost-effective, and energy-saving method for the preparation of metal oxide electron transport layer in PSCs.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.