David Burger, Noah Keim, Junaid Shabbir, Yuhao Gao, Marcus Müller, Werner Bauer, Alexander Hoffmann, Philip Scharfer, Wilhelm Schabel
{"title":"Simultaneous Primer Coating for Fast Drying of Battery Electrodes","authors":"David Burger, Noah Keim, Junaid Shabbir, Yuhao Gao, Marcus Müller, Werner Bauer, Alexander Hoffmann, Philip Scharfer, Wilhelm Schabel","doi":"10.1002/ente.202401668","DOIUrl":null,"url":null,"abstract":"<p>Primers are used to promote adhesion and reduce electrical interface resistance. Normally, the process of applying primer and electrode coating happens in two separate, sequential steps. Herein, primer and electrode are applied simultaneously, wet-in-wet. For fast drying of electrode coatings, a binder-redistribution by binder migration happens. A normally unwanted binder migration is tried to be utilized. The goal is to use less binder in the electrode coating and dry it faster without losses in adhesion and performance. By using simultaneous primer coatings incorporating LAPONITE, the adhesion can be promoted by over 200%. This allows to eliminate the styrene-butadiene-rubber-binder in the electrode slurry, saving in total of 70% of the binder. For eight times faster drying up to 30% improved specific capacity at 2C can be shown. This promising approach shows potential for any materials that lack adhesion, extending it, e.g., to porous, nanostructured particles and materials used in sodium-ion batteries.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ente.202401668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401668","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Primers are used to promote adhesion and reduce electrical interface resistance. Normally, the process of applying primer and electrode coating happens in two separate, sequential steps. Herein, primer and electrode are applied simultaneously, wet-in-wet. For fast drying of electrode coatings, a binder-redistribution by binder migration happens. A normally unwanted binder migration is tried to be utilized. The goal is to use less binder in the electrode coating and dry it faster without losses in adhesion and performance. By using simultaneous primer coatings incorporating LAPONITE, the adhesion can be promoted by over 200%. This allows to eliminate the styrene-butadiene-rubber-binder in the electrode slurry, saving in total of 70% of the binder. For eight times faster drying up to 30% improved specific capacity at 2C can be shown. This promising approach shows potential for any materials that lack adhesion, extending it, e.g., to porous, nanostructured particles and materials used in sodium-ion batteries.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.