{"title":"Capsid protein of turnip crinkle virus suppresses antiviral RNA decay by degrading Arabidopsis Dcp1 via ubiquitination pathway","authors":"Kunxin Wu, Qiuxian Xie, Xueting Liu, Yan Fu, Shuxia Li, Xiaoling Yu, Wenbin Li, Pingjuan Zhao, Yanli Ren, Mengbin Ruan, Xiuchun Zhang","doi":"10.1111/tpj.70075","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>RNA decay is a pervasive process in eukaryotic cells. Viruses utilize the host cell's intracellular machinery to gain access to essential molecules and subcellular structures required for infection during the pathogenesis process. The study demonstrates that turnip crinkle virus (TCV) infection enhances the expression of Arabidopsis Dcp1 (AtDcp1), which negatively regulates the accumulation of TCV RNA, indicating its involvement in antiviral defense. Nevertheless, TCV circumvents the antiviral defense based on RNA decay, as indicated by the capsid protein (CP) of TCV stabilizing the known nonsense-mediated RNA decay-targeted transcripts. <i>In vivo</i>, CP physically interacts with AtDcp1, promoting AtDcp1 degradation via ubiquitination pathway. This is evidenced by the observation that the degradation is inhibited by 26S proteasome inhibitors. Furthermore, CP elevates the polyubiquitination of Dcp1-Flag. These data indicate that CP suppresses RNA decay by interacting with AtDcp1 and mediating its degradation through the 26S proteasome pathway, effectively suppressing antiviral RNA decay. This study uncovers a previously unidentified virulence strategy in the ongoing conflict between plants and TCV.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70075","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
RNA decay is a pervasive process in eukaryotic cells. Viruses utilize the host cell's intracellular machinery to gain access to essential molecules and subcellular structures required for infection during the pathogenesis process. The study demonstrates that turnip crinkle virus (TCV) infection enhances the expression of Arabidopsis Dcp1 (AtDcp1), which negatively regulates the accumulation of TCV RNA, indicating its involvement in antiviral defense. Nevertheless, TCV circumvents the antiviral defense based on RNA decay, as indicated by the capsid protein (CP) of TCV stabilizing the known nonsense-mediated RNA decay-targeted transcripts. In vivo, CP physically interacts with AtDcp1, promoting AtDcp1 degradation via ubiquitination pathway. This is evidenced by the observation that the degradation is inhibited by 26S proteasome inhibitors. Furthermore, CP elevates the polyubiquitination of Dcp1-Flag. These data indicate that CP suppresses RNA decay by interacting with AtDcp1 and mediating its degradation through the 26S proteasome pathway, effectively suppressing antiviral RNA decay. This study uncovers a previously unidentified virulence strategy in the ongoing conflict between plants and TCV.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.