{"title":"Design and Implementation of a Compact Dual-Band MIMO Antenna Module With Enhanced Bandwidth and Isolation","authors":"Hamed Hamlbar Gerami, Robab Kazemi, Aly E. Fathy","doi":"10.1155/mmce/7326700","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a compact dual-band antenna module has been developed, achieving significant isolation between the ports. The design integrates an open-edge slot antenna for the lower frequency band (5.15–7.1 GHz) with a 1 × 2 MIMO metasurface antenna for the mmWave frequency range (24.5–29.5 GHz), resulting in a high-performance, compact dual-band solution. The slot antenna is optimized for a reduced size configuration with enhanced bandwidth for lower frequencies, while the metasurface antenna delivers wider bandwidth and stable performance in the mmWave range with minimal mutual coupling and high efficiency. This makes the overall design highly effective for modern compact dual-band applications. The dual-band antenna module has dimensions of 20 × 16.5 × 0.99 mm (0.39<i>λ</i><sub>0</sub> × 0.32<i>λ</i><sub>0</sub> × 0.01<i>λ</i><sub>0</sub>, where <i>λ</i><sub>0</sub> represents the free-space wavelength at 5.85 GHz). It achieves a measured peak gain of 3.8 dB for the lower band and 8.81 dB for the mmWave band. Additionally, the output of the mmWave antennas can be combined for higher gain or used in a MIMO configuration, enhancing channel capacity and communication reliability, which are critical for modern wireless systems.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/7326700","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/7326700","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a compact dual-band antenna module has been developed, achieving significant isolation between the ports. The design integrates an open-edge slot antenna for the lower frequency band (5.15–7.1 GHz) with a 1 × 2 MIMO metasurface antenna for the mmWave frequency range (24.5–29.5 GHz), resulting in a high-performance, compact dual-band solution. The slot antenna is optimized for a reduced size configuration with enhanced bandwidth for lower frequencies, while the metasurface antenna delivers wider bandwidth and stable performance in the mmWave range with minimal mutual coupling and high efficiency. This makes the overall design highly effective for modern compact dual-band applications. The dual-band antenna module has dimensions of 20 × 16.5 × 0.99 mm (0.39λ0 × 0.32λ0 × 0.01λ0, where λ0 represents the free-space wavelength at 5.85 GHz). It achieves a measured peak gain of 3.8 dB for the lower band and 8.81 dB for the mmWave band. Additionally, the output of the mmWave antennas can be combined for higher gain or used in a MIMO configuration, enhancing channel capacity and communication reliability, which are critical for modern wireless systems.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.