The 2024 Fentale Diking Episode in a Slow Extending Continental Rift

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
D. Keir, A. La Rosa, C. Pagli, H. Wang, A. Ayele, E. Lewi, F. Monterroso, M. Raggiunti
{"title":"The 2024 Fentale Diking Episode in a Slow Extending Continental Rift","authors":"D. Keir,&nbsp;A. La Rosa,&nbsp;C. Pagli,&nbsp;H. Wang,&nbsp;A. Ayele,&nbsp;E. Lewi,&nbsp;F. Monterroso,&nbsp;M. Raggiunti","doi":"10.1029/2024GL113214","DOIUrl":null,"url":null,"abstract":"<p>Dikes can contribute to rifting, but the space-time behavior and role of magma in young and slowly extending continental rifts is unclear. We use InSAR and seismicity during the 2024 Fentale intrusion in the Main Ethiopian rift (MER) to understand magma-assisted rifting at slow extension rates (5 mm/yr). From 2021 to mid-2024, the Fentale Volcanic Complex (FVC) uplifted up to 6 cm. From mid-September 2024, upper crustal diking started northwards along the rift, initially with subdued seismicity. From late-September to early November, dike opening increased to ∼2 m and propagated a total of ∼14 km north, causing increased seismicity from normal faulting. The dike made ∼90% of the total geodetic moment, with the rest from faulting. The character of the event is similar to rifting episodes at mid-ocean ridges and demonstrates that episodic diking can occur in young, slow extending continent rifts but must be more infrequent.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113214","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113214","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dikes can contribute to rifting, but the space-time behavior and role of magma in young and slowly extending continental rifts is unclear. We use InSAR and seismicity during the 2024 Fentale intrusion in the Main Ethiopian rift (MER) to understand magma-assisted rifting at slow extension rates (5 mm/yr). From 2021 to mid-2024, the Fentale Volcanic Complex (FVC) uplifted up to 6 cm. From mid-September 2024, upper crustal diking started northwards along the rift, initially with subdued seismicity. From late-September to early November, dike opening increased to ∼2 m and propagated a total of ∼14 km north, causing increased seismicity from normal faulting. The dike made ∼90% of the total geodetic moment, with the rest from faulting. The character of the event is similar to rifting episodes at mid-ocean ridges and demonstrates that episodic diking can occur in young, slow extending continent rifts but must be more infrequent.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信