Effects of Glycine Supplementation on Growth Performance, Antioxidant Activity, Immunity, and Muscle Tissue Structure of Whiteleg Shrimp (Litopenaeus vannamei) Under Fermented Soybean Meal Substitution

IF 1.9 4区 农林科学 Q2 FISHERIES
Jieyu Dai, Songming Chen, Qiang Chen, Fen Dong, Yunping Tang, Jiteng Wang, Sheenan Harpaz, Tao Han
{"title":"Effects of Glycine Supplementation on Growth Performance, Antioxidant Activity, Immunity, and Muscle Tissue Structure of Whiteleg Shrimp (Litopenaeus vannamei) Under Fermented Soybean Meal Substitution","authors":"Jieyu Dai,&nbsp;Songming Chen,&nbsp;Qiang Chen,&nbsp;Fen Dong,&nbsp;Yunping Tang,&nbsp;Jiteng Wang,&nbsp;Sheenan Harpaz,&nbsp;Tao Han","doi":"10.1155/are/3107866","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Exogenous amino acid supplementation has become a nutritional strategy to improve the tolerance of whiteleg shrimp (<i>Litopenaeus vannamei</i>) to a high proportion of vegetable protein diets. In the present study, the effects of glycine in high-proportion fermented soybean meal (FSBM) feed for shrimp were verified. SBM fermented by <i>Bacillus subtilis</i> was used to replace 50%, 75%, and 100% of fish meal (FM), respectively. Concomitantly, 1% glycine was added to the diets containing FSBM. After an 8-week feeding trial, FSBM substitution significantly inhibited the growth parameters of shrimp, including weight gain rate (WGR) and specific growth rate (SGR). Glycine supplementation significantly alleviated the inhibition of growth performance induced by 50% FSBM substitution but not in the 75% and 100% FSBM substitution groups. Glycine significantly increased the level of glycine in the muscle. In addition, glycine supplementation improved the structure of hepatopancreas and increased the length of sarcomeres and myofiber density in muscle tissue. RT-qPCR results revealed that glycine inhibited the mRNA expression of <i>smyhc1</i> and <i>smyhc2</i>. Further investigation revealed that glycine enhanced the antioxidant capacity in muscle tissue and inhibited the mRNA expression of immune genes, including <i>traf6</i>, <i>toll</i>, and <i>lgbp</i>, caused by FSBM substitution. In summary, the results indicated that appropriate glycine supplementation could ensure that 50% FSBM substitution of FM did not affect the growth performance of shrimp. Moreover, glycine may improve the structure of muscle tissue by enhancing antioxidant capacity and immunity. This study further emphasized the crucial role of glycine in the development of low FM feed for shrimp.</p>\n </div>","PeriodicalId":8104,"journal":{"name":"Aquaculture Research","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/are/3107866","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/are/3107866","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Exogenous amino acid supplementation has become a nutritional strategy to improve the tolerance of whiteleg shrimp (Litopenaeus vannamei) to a high proportion of vegetable protein diets. In the present study, the effects of glycine in high-proportion fermented soybean meal (FSBM) feed for shrimp were verified. SBM fermented by Bacillus subtilis was used to replace 50%, 75%, and 100% of fish meal (FM), respectively. Concomitantly, 1% glycine was added to the diets containing FSBM. After an 8-week feeding trial, FSBM substitution significantly inhibited the growth parameters of shrimp, including weight gain rate (WGR) and specific growth rate (SGR). Glycine supplementation significantly alleviated the inhibition of growth performance induced by 50% FSBM substitution but not in the 75% and 100% FSBM substitution groups. Glycine significantly increased the level of glycine in the muscle. In addition, glycine supplementation improved the structure of hepatopancreas and increased the length of sarcomeres and myofiber density in muscle tissue. RT-qPCR results revealed that glycine inhibited the mRNA expression of smyhc1 and smyhc2. Further investigation revealed that glycine enhanced the antioxidant capacity in muscle tissue and inhibited the mRNA expression of immune genes, including traf6, toll, and lgbp, caused by FSBM substitution. In summary, the results indicated that appropriate glycine supplementation could ensure that 50% FSBM substitution of FM did not affect the growth performance of shrimp. Moreover, glycine may improve the structure of muscle tissue by enhancing antioxidant capacity and immunity. This study further emphasized the crucial role of glycine in the development of low FM feed for shrimp.

Abstract Image

添加甘氨酸对替代发酵豆粕条件下凡纳滨对虾生长性能、抗氧化活性、免疫和肌肉组织结构的影响
补充外源氨基酸已成为提高凡纳滨对虾(Litopenaeus vannamei)对高比例植物蛋白饲料耐受性的一种营养策略。本研究验证了甘氨酸在高比例发酵豆粕(FSBM)对虾饲料中的作用。用枯草芽孢杆菌发酵的SBM分别替代50%、75%和100%的鱼粉。同时,在含FSBM的饲粮中添加1%甘氨酸。饲喂8周后,FSBM替代显著抑制了对虾的增重率(WGR)和特定生长率(SGR)。补充甘氨酸可显著缓解替代50%鱼粉组对生长性能的抑制,而替代75%和100%鱼粉组对生长性能的抑制无显著影响。甘氨酸显著提高了肌肉中的甘氨酸水平。此外,添加甘氨酸改善了肝胰脏的结构,增加了肌肉组织中肌节的长度和肌纤维密度。RT-qPCR结果显示,甘氨酸抑制smyhc1和smyhc2 mRNA的表达。进一步研究发现,甘氨酸增强了肌肉组织的抗氧化能力,抑制了FSBM替代引起的免疫基因traf6、toll和lgbp的mRNA表达。综上所述,饲粮中添加适量的甘氨酸可确保鱼粉替代50%不影响对虾的生长性能。此外,甘氨酸可以通过增强抗氧化能力和免疫力来改善肌肉组织的结构。本研究进一步强调了甘氨酸在开发对虾低调频饲料中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquaculture Research
Aquaculture Research 农林科学-渔业
CiteScore
4.60
自引率
5.00%
发文量
464
审稿时长
5.3 months
期刊介绍: International in perspective, Aquaculture Research is published 12 times a year and specifically addresses research and reference needs of all working and studying within the many varied areas of aquaculture. The Journal regularly publishes papers on applied or scientific research relevant to freshwater, brackish, and marine aquaculture. It covers all aquatic organisms, floristic and faunistic, related directly or indirectly to human consumption. The journal also includes review articles, short communications and technical papers. Young scientists are particularly encouraged to submit short communications based on their own research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信