{"title":"Improvement of the efficiency and stability of solar cells using grating and hole-transferring nickel oxide-graphene oxide double-layer","authors":"Ali Farmani, Anis Omidniaee","doi":"10.1007/s40243-025-00301-1","DOIUrl":null,"url":null,"abstract":"<div><p>This work improved energy efficiency, stability and energy stability in organic and organic perovskite solar cells, by using titanium dioxide as anti-reflective coating on silver. The use of graphene oxide-nickel oxide layer as a hole-transporting layer enhanced carrier mobility in addition to incrementing stability. The outcomes that have been meticulously extracted and analyzed from the finite-difference time-domain (FDTD) simulations provide compelling evidence that this particular methodology can be adeptly utilized to significantly enhance the capability to attain a remarkably broad absorption spectrum across a wide range of wavelengths, specifically those identified frorm 200 nm to 900 nm, which are of critical importance in solar cell applications. Optical analysis was conducted by Maxwell method. Dielectric plasmonic wire grating was proposed to increase optical absorbance and achieve maximum current. The electrical analysis of the structure was based on Poisson’s equations. Optical analysis of the inorganic halide perovskite revealed current density, open circuit voltage, fill factor, and power of 34.294 mA/cm<sup>2</sup>, 1.04 V, 0.83369817, and 1.64 mA/cm<sup>2</sup>. The energy conversion efficiency was also 29.3%.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00301-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00301-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work improved energy efficiency, stability and energy stability in organic and organic perovskite solar cells, by using titanium dioxide as anti-reflective coating on silver. The use of graphene oxide-nickel oxide layer as a hole-transporting layer enhanced carrier mobility in addition to incrementing stability. The outcomes that have been meticulously extracted and analyzed from the finite-difference time-domain (FDTD) simulations provide compelling evidence that this particular methodology can be adeptly utilized to significantly enhance the capability to attain a remarkably broad absorption spectrum across a wide range of wavelengths, specifically those identified frorm 200 nm to 900 nm, which are of critical importance in solar cell applications. Optical analysis was conducted by Maxwell method. Dielectric plasmonic wire grating was proposed to increase optical absorbance and achieve maximum current. The electrical analysis of the structure was based on Poisson’s equations. Optical analysis of the inorganic halide perovskite revealed current density, open circuit voltage, fill factor, and power of 34.294 mA/cm2, 1.04 V, 0.83369817, and 1.64 mA/cm2. The energy conversion efficiency was also 29.3%.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies