I. Charef, S. Touam, A. Boumaza, N. Mounis, F. Z. Khelifati, M. Gacem, I. Bendjedide, H. Meradji, S. Ghemid
{"title":"Ab Initio Calculation of Structural, Electronic, Optical, and Elastic Properties of the Ternary Alloy YBi1–xPx with Their Binary Compounds YBi and YP","authors":"I. Charef, S. Touam, A. Boumaza, N. Mounis, F. Z. Khelifati, M. Gacem, I. Bendjedide, H. Meradji, S. Ghemid","doi":"10.1134/S106378342460225X","DOIUrl":null,"url":null,"abstract":"<p>In order to simulate the structural, electronic, optical and elastic properties of the ternary alloys YBi<sub>1–<i>x</i></sub>P<sub><i>x</i></sub> as a function of phosphorus concentration in the sodium chloride (NaCl) phase, we employed the full-potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT) framework, as implemented in the WIEN2K simulator. The potentials were obtained using the advanced Wu–Cohen generalized gradient (WC-GGA) and modified Becke–Johnson (mBJ) approximations. For the parent compounds YBi and YP, our calculated structural, electronic, and elastic properties align well with existing experimental and theoretical data. Furthermore, we reported and analyzed some predicted results about the ternary alloys YBi<sub>1–<i>x</i></sub>P<sub><i>x</i></sub> including lattice constant, bulk modulus, band structure, real and imaginary parts of the dielectric function, elastic constants, shear modulus, anisotropy factor and Young’s modulus.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 3","pages":"181 - 195"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106378342460225X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
In order to simulate the structural, electronic, optical and elastic properties of the ternary alloys YBi1–xPx as a function of phosphorus concentration in the sodium chloride (NaCl) phase, we employed the full-potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT) framework, as implemented in the WIEN2K simulator. The potentials were obtained using the advanced Wu–Cohen generalized gradient (WC-GGA) and modified Becke–Johnson (mBJ) approximations. For the parent compounds YBi and YP, our calculated structural, electronic, and elastic properties align well with existing experimental and theoretical data. Furthermore, we reported and analyzed some predicted results about the ternary alloys YBi1–xPx including lattice constant, bulk modulus, band structure, real and imaginary parts of the dielectric function, elastic constants, shear modulus, anisotropy factor and Young’s modulus.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.