N. M. M. Said, G. Molera Calvés, P. Kummamuru, J. Edwards, M. Maoli, G. Cimo’
{"title":"Simultaneous multi-spacecraft observations with VLBI radio telescopes to study the interplanetary phase scintillation","authors":"N. M. M. Said, G. Molera Calvés, P. Kummamuru, J. Edwards, M. Maoli, G. Cimo’","doi":"10.1007/s10686-025-09989-5","DOIUrl":null,"url":null,"abstract":"<div><p>Ground-based observations of spacecraft signals have been used to study space weather. However, single spacecraft measurements observed from the Earth have limitations in studying the structure and evolution of solar plasma as they are unable to differentiate spatial and temporal variations. To overcome this limitation and improve our understanding of interplanetary scintillation, we simultaneously observed radio signals transmitted by two co-orbiting spacecraft: the ESA Mars Express (MEX) and the Chinese National Space Administration Tianwen-1 (TIW-1). We conducted the observations from April to November 2021 using the University of Tasmania’s VLBI radio telescopes at 8.4 GHz. We employed the Planetary Radio Interferometer and Doppler Experiment (PRIDE) technique to determine the topocentric Doppler measurements and residual phase of the carrier signal. These observables were used to quantify the phase fluctuations of the spacecraft signals caused by solar wind and hydrodynamic turbulence in the interplanetary medium. The measured phase fluctuations RMS from both spacecraft show small differences which are caused by factors such as the spacecraft’s motion, onboard electronics, and variations in the uplink signal path through Earth’s ionosphere. These fluctuations decrease with solar elongation and correlate with solar radio flux at 10.7 cm (2800 MHz), indicating solar activity. The estimated total electron contents along MEX and TIW-1’s radio lines of sight are similar, with higher values at lower solar elongations. Simultaneous multi-spacecraft observations also enable RFI characterization, frequent spacecraft performance comparisons, and investigation of solar activity effects on spacecraft performance and scientific outcomes.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-09989-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-025-09989-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ground-based observations of spacecraft signals have been used to study space weather. However, single spacecraft measurements observed from the Earth have limitations in studying the structure and evolution of solar plasma as they are unable to differentiate spatial and temporal variations. To overcome this limitation and improve our understanding of interplanetary scintillation, we simultaneously observed radio signals transmitted by two co-orbiting spacecraft: the ESA Mars Express (MEX) and the Chinese National Space Administration Tianwen-1 (TIW-1). We conducted the observations from April to November 2021 using the University of Tasmania’s VLBI radio telescopes at 8.4 GHz. We employed the Planetary Radio Interferometer and Doppler Experiment (PRIDE) technique to determine the topocentric Doppler measurements and residual phase of the carrier signal. These observables were used to quantify the phase fluctuations of the spacecraft signals caused by solar wind and hydrodynamic turbulence in the interplanetary medium. The measured phase fluctuations RMS from both spacecraft show small differences which are caused by factors such as the spacecraft’s motion, onboard electronics, and variations in the uplink signal path through Earth’s ionosphere. These fluctuations decrease with solar elongation and correlate with solar radio flux at 10.7 cm (2800 MHz), indicating solar activity. The estimated total electron contents along MEX and TIW-1’s radio lines of sight are similar, with higher values at lower solar elongations. Simultaneous multi-spacecraft observations also enable RFI characterization, frequent spacecraft performance comparisons, and investigation of solar activity effects on spacecraft performance and scientific outcomes.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.